脑卒中后重度记忆丧失医学康复的虚拟现实平台开发方法

Daniel Lanzoni, A. Vitali, D. Regazzoni, C. Rizzi
{"title":"脑卒中后重度记忆丧失医学康复的虚拟现实平台开发方法","authors":"Daniel Lanzoni, A. Vitali, D. Regazzoni, C. Rizzi","doi":"10.1115/detc2021-70319","DOIUrl":null,"url":null,"abstract":"\n The paper presents a method to develop Virtual Reality (VR) platforms based on serious games for the rehabilitation of severe memory loss. In particular, it is related to retrograde amnesia, a condition affecting patient’s quality of life usually caused by brain stroke. Nowadays, the standard rehabilitation process consists in showing pictures of patient’s familiar environments in order to recover the memory. Past research works have investigated the use of 3D scanners for the virtualization of real environment and virtual reality for the generation of more immersive interaction to design serious games for neurocognitive rehabilitation. Reached results highlighted a time-consuming development process to interface each new environment with the game logic specifically developed for the serious games. Furthermore, a complete VR platform must also consider the medical monitoring and the data management oriented to a more objective medical assessment.\n The proposed method allows the design of VR platforms based on patient-specific serious games for memory loss starting from the 3D scanning acquisition of familiar environments. The 3D acquisition is performed using the Occipital Structure Sensor and the Skanect application. A modular procedure has been designed to interface the virtual objects of each acquired environment with the modules of the game-logic developed with Unity. The immersive Virtual Reality is based on the use of the HTC Vive Pro head mounted display. Furthermore, the method permits to associate the patient-specific serious game to a set of software modules for the medical monitoring and the data management for the generation of reports useful for the evaluation. The solution has been evaluated by measuring the time needed to develop a whole VR platform for two different familiar environments. Less than 5 hours are required to complete the design process.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method to Develop Virtual Reality Platforms for the Medical Rehabilitation of Severe Memory Loss After Brain Stroke\",\"authors\":\"Daniel Lanzoni, A. Vitali, D. Regazzoni, C. Rizzi\",\"doi\":\"10.1115/detc2021-70319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The paper presents a method to develop Virtual Reality (VR) platforms based on serious games for the rehabilitation of severe memory loss. In particular, it is related to retrograde amnesia, a condition affecting patient’s quality of life usually caused by brain stroke. Nowadays, the standard rehabilitation process consists in showing pictures of patient’s familiar environments in order to recover the memory. Past research works have investigated the use of 3D scanners for the virtualization of real environment and virtual reality for the generation of more immersive interaction to design serious games for neurocognitive rehabilitation. Reached results highlighted a time-consuming development process to interface each new environment with the game logic specifically developed for the serious games. Furthermore, a complete VR platform must also consider the medical monitoring and the data management oriented to a more objective medical assessment.\\n The proposed method allows the design of VR platforms based on patient-specific serious games for memory loss starting from the 3D scanning acquisition of familiar environments. The 3D acquisition is performed using the Occipital Structure Sensor and the Skanect application. A modular procedure has been designed to interface the virtual objects of each acquired environment with the modules of the game-logic developed with Unity. The immersive Virtual Reality is based on the use of the HTC Vive Pro head mounted display. Furthermore, the method permits to associate the patient-specific serious game to a set of software modules for the medical monitoring and the data management for the generation of reports useful for the evaluation. The solution has been evaluated by measuring the time needed to develop a whole VR platform for two different familiar environments. Less than 5 hours are required to complete the design process.\",\"PeriodicalId\":23602,\"journal\":{\"name\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-70319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-70319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于严肃游戏的虚拟现实(VR)平台的开发方法,用于重度记忆丧失的康复治疗。特别是,它与逆行性健忘症有关,这是一种通常由脑中风引起的影响患者生活质量的疾病。如今,标准的康复过程包括向患者展示熟悉环境的图片,以恢复记忆。过去的研究工作已经研究了使用3D扫描仪来虚拟化真实环境和虚拟现实来生成更身临其境的交互,以设计用于神经认知康复的严肃游戏。达到的结果突出了将每个新环境与专门为严肃游戏开发的游戏逻辑相结合的耗时开发过程。此外,一个完整的VR平台还必须考虑面向更客观的医疗评估的医疗监测和数据管理。提出的方法允许基于患者特定的记忆丧失严肃游戏设计VR平台,从熟悉环境的3D扫描获取开始。使用枕结构传感器和Skanect应用程序进行3D采集。设计了一个模块化程序,将每个获得的环境中的虚拟对象与使用Unity开发的游戏逻辑模块连接起来。沉浸式虚拟现实是基于使用HTC Vive Pro头戴式显示器。此外,该方法允许将特定患者的严重游戏与一组用于医疗监测和数据管理的软件模块相关联,以生成对评估有用的报告。通过测量为两个不同的熟悉环境开发整个VR平台所需的时间,对该解决方案进行了评估。完成设计过程需要不到5个小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Method to Develop Virtual Reality Platforms for the Medical Rehabilitation of Severe Memory Loss After Brain Stroke
The paper presents a method to develop Virtual Reality (VR) platforms based on serious games for the rehabilitation of severe memory loss. In particular, it is related to retrograde amnesia, a condition affecting patient’s quality of life usually caused by brain stroke. Nowadays, the standard rehabilitation process consists in showing pictures of patient’s familiar environments in order to recover the memory. Past research works have investigated the use of 3D scanners for the virtualization of real environment and virtual reality for the generation of more immersive interaction to design serious games for neurocognitive rehabilitation. Reached results highlighted a time-consuming development process to interface each new environment with the game logic specifically developed for the serious games. Furthermore, a complete VR platform must also consider the medical monitoring and the data management oriented to a more objective medical assessment. The proposed method allows the design of VR platforms based on patient-specific serious games for memory loss starting from the 3D scanning acquisition of familiar environments. The 3D acquisition is performed using the Occipital Structure Sensor and the Skanect application. A modular procedure has been designed to interface the virtual objects of each acquired environment with the modules of the game-logic developed with Unity. The immersive Virtual Reality is based on the use of the HTC Vive Pro head mounted display. Furthermore, the method permits to associate the patient-specific serious game to a set of software modules for the medical monitoring and the data management for the generation of reports useful for the evaluation. The solution has been evaluated by measuring the time needed to develop a whole VR platform for two different familiar environments. Less than 5 hours are required to complete the design process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Bus Factor in Conceptual System Design: Protecting a Design Process Against Major Regional and World Events Exploration of the Digital Innovation Process in the Smart Product-Service System Optimized Torque Assistance During Walking With an Idealized Hip Exoskeleton An Algorithm for Partitioning Objects Into a Cube Skeleton and Segmented Shell Covers for Parallelized Additive Manufacturing Neurocognitive Effects of Incentivizing Students to Improve Performance Through Repeat Attempts in Design Settings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1