利用线性化模型学习配电系统中最优潮流解

R. Sadnan, A. Dubey
{"title":"利用线性化模型学习配电系统中最优潮流解","authors":"R. Sadnan, A. Dubey","doi":"10.1109/PVSC43889.2021.9518472","DOIUrl":null,"url":null,"abstract":"Solving nonlinear optimal power flow (OPF) problem is computationally expensive, and poses scalability challenges for power distribution networks. An alternative to solving the original nonlinear OPF is the linear approximated OPF models. Although, these linear approximated OPF models are fast, the resulting solutions may result in significant optimality gap. Lately, the application of machine learning (ML) methods in successfully solving the nonlinear OPF has been reported. These methods learn and estimate the nonlinear control policies using a purely data-driven approach. In this paper, we propose an approach to complements the ML based approach to solving OPF using solutions from known linearized OPF model. Specifically, we use supervised learning to map the solutions of linear OPF to nonlinear control variables. Unlike, the traditional ML based methods for OPF that approximate the full distribution feeder model using function approximation, our approach uses a two-node approximation of radial networks. The proposed approach is validated using IEEE 123 bus test system for OPF solutions obtained using the nonlinear OPF models.","PeriodicalId":6788,"journal":{"name":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","volume":"6 1","pages":"1586-1590"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Optimal Power Flow Solutions using Linearized Models in Power Distribution Systems\",\"authors\":\"R. Sadnan, A. Dubey\",\"doi\":\"10.1109/PVSC43889.2021.9518472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving nonlinear optimal power flow (OPF) problem is computationally expensive, and poses scalability challenges for power distribution networks. An alternative to solving the original nonlinear OPF is the linear approximated OPF models. Although, these linear approximated OPF models are fast, the resulting solutions may result in significant optimality gap. Lately, the application of machine learning (ML) methods in successfully solving the nonlinear OPF has been reported. These methods learn and estimate the nonlinear control policies using a purely data-driven approach. In this paper, we propose an approach to complements the ML based approach to solving OPF using solutions from known linearized OPF model. Specifically, we use supervised learning to map the solutions of linear OPF to nonlinear control variables. Unlike, the traditional ML based methods for OPF that approximate the full distribution feeder model using function approximation, our approach uses a two-node approximation of radial networks. The proposed approach is validated using IEEE 123 bus test system for OPF solutions obtained using the nonlinear OPF models.\",\"PeriodicalId\":6788,\"journal\":{\"name\":\"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"6 1\",\"pages\":\"1586-1590\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC43889.2021.9518472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC43889.2021.9518472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

求解非线性最优潮流问题不仅计算成本高,而且对配电网的可扩展性提出了挑战。求解原始非线性OPF的另一种方法是线性逼近OPF模型。虽然这些线性逼近的OPF模型速度很快,但得到的解可能导致显著的最优性差距。近年来,机器学习(ML)方法在求解非线性OPF问题中的成功应用已被报道。这些方法使用纯数据驱动的方法来学习和估计非线性控制策略。在本文中,我们提出了一种方法来补充基于ML的方法,使用已知线性化OPF模型的解来求解OPF。具体来说,我们使用监督学习将线性OPF的解映射到非线性控制变量。与传统的基于ML的OPF方法使用函数逼近逼近全分布馈线模型不同,我们的方法使用径向网络的双节点逼近。利用IEEE 123总线测试系统对非线性OPF模型得到的OPF解进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Optimal Power Flow Solutions using Linearized Models in Power Distribution Systems
Solving nonlinear optimal power flow (OPF) problem is computationally expensive, and poses scalability challenges for power distribution networks. An alternative to solving the original nonlinear OPF is the linear approximated OPF models. Although, these linear approximated OPF models are fast, the resulting solutions may result in significant optimality gap. Lately, the application of machine learning (ML) methods in successfully solving the nonlinear OPF has been reported. These methods learn and estimate the nonlinear control policies using a purely data-driven approach. In this paper, we propose an approach to complements the ML based approach to solving OPF using solutions from known linearized OPF model. Specifically, we use supervised learning to map the solutions of linear OPF to nonlinear control variables. Unlike, the traditional ML based methods for OPF that approximate the full distribution feeder model using function approximation, our approach uses a two-node approximation of radial networks. The proposed approach is validated using IEEE 123 bus test system for OPF solutions obtained using the nonlinear OPF models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent HVPE grown solar cells at NREL Material Requirements for CdSe Wide Bandgap Solar Cells Operating Temperature of Building Applied Photovoltaic Modules in Microclimate Degradation of Surface Recombination Velocity at a-Si/c-Si interface under light and temperature A simple, semi-empirical performance modeling approach for partially transparent tracking-integrated concentrator photovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1