MadLINQ:用于云的大规模分布式矩阵计算

Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen, Yuan Yu, T. Moscibroda, Zheng Zhang
{"title":"MadLINQ:用于云的大规模分布式矩阵计算","authors":"Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen, Yuan Yu, T. Moscibroda, Zheng Zhang","doi":"10.1145/2168836.2168857","DOIUrl":null,"url":null,"abstract":"The computation core of many data-intensive applications can be best expressed as matrix computations. The MadLINQ project addresses the following two important research problems: the need for a highly scalable, efficient and fault-tolerant matrix computation system that is also easy to program, and the seamless integration of such specialized execution engines in a general purpose data-parallel computing system.\n MadLINQ exposes a unified programming model to both matrix algorithm and application developers. Matrix algorithms are expressed as sequential programs operating on tiles (i.e., sub-matrices). For application developers, MadLINQ provides a distributed matrix computation library for .NET languages. Via the LINQ technology, MadLINQ also seamlessly integrates with DryadLINQ, a data-parallel computing system focusing on relational algebra.\n The system automatically handles the parallelization and distributed execution of programs on a large cluster. It outperforms current state-of-the-art systems by employing two key techniques, both of which are enabled by the matrix abstraction: exploiting extra parallelism using fine-grained pipelining and efficient on-demand failure recovery using a distributed fault-tolerant execution engine. We describe the design and implementation of MadLINQ and evaluate system performance using several real-world applications.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"10 1","pages":"197-210"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"MadLINQ: large-scale distributed matrix computation for the cloud\",\"authors\":\"Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen, Yuan Yu, T. Moscibroda, Zheng Zhang\",\"doi\":\"10.1145/2168836.2168857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computation core of many data-intensive applications can be best expressed as matrix computations. The MadLINQ project addresses the following two important research problems: the need for a highly scalable, efficient and fault-tolerant matrix computation system that is also easy to program, and the seamless integration of such specialized execution engines in a general purpose data-parallel computing system.\\n MadLINQ exposes a unified programming model to both matrix algorithm and application developers. Matrix algorithms are expressed as sequential programs operating on tiles (i.e., sub-matrices). For application developers, MadLINQ provides a distributed matrix computation library for .NET languages. Via the LINQ technology, MadLINQ also seamlessly integrates with DryadLINQ, a data-parallel computing system focusing on relational algebra.\\n The system automatically handles the parallelization and distributed execution of programs on a large cluster. It outperforms current state-of-the-art systems by employing two key techniques, both of which are enabled by the matrix abstraction: exploiting extra parallelism using fine-grained pipelining and efficient on-demand failure recovery using a distributed fault-tolerant execution engine. We describe the design and implementation of MadLINQ and evaluate system performance using several real-world applications.\",\"PeriodicalId\":20737,\"journal\":{\"name\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"volume\":\"10 1\",\"pages\":\"197-210\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2168836.2168857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2168836.2168857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

许多数据密集型应用的计算核心可以用矩阵计算来最好地表达。MadLINQ项目解决了以下两个重要的研究问题:需要一个高度可扩展、高效和容错的矩阵计算系统,并且易于编程,以及在通用数据并行计算系统中无缝集成这种专门的执行引擎。MadLINQ向矩阵算法和应用程序开发人员公开了统一的编程模型。矩阵算法表示为在块(即子矩阵)上操作的顺序程序。对于应用程序开发人员,MadLINQ为。net语言提供了一个分布式矩阵计算库。通过LINQ技术,MadLINQ还与DryadLINQ无缝集成,DryadLINQ是一个专注于关系代数的数据并行计算系统。该系统自动处理大型集群上程序的并行化和分布式执行。通过采用两项关键技术(这两项技术都是由矩阵抽象实现的),它优于当前最先进的系统:使用细粒度管道利用额外的并行性,使用分布式容错执行引擎利用高效的按需故障恢复。我们描述了MadLINQ的设计和实现,并使用几个实际应用程序评估了系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MadLINQ: large-scale distributed matrix computation for the cloud
The computation core of many data-intensive applications can be best expressed as matrix computations. The MadLINQ project addresses the following two important research problems: the need for a highly scalable, efficient and fault-tolerant matrix computation system that is also easy to program, and the seamless integration of such specialized execution engines in a general purpose data-parallel computing system. MadLINQ exposes a unified programming model to both matrix algorithm and application developers. Matrix algorithms are expressed as sequential programs operating on tiles (i.e., sub-matrices). For application developers, MadLINQ provides a distributed matrix computation library for .NET languages. Via the LINQ technology, MadLINQ also seamlessly integrates with DryadLINQ, a data-parallel computing system focusing on relational algebra. The system automatically handles the parallelization and distributed execution of programs on a large cluster. It outperforms current state-of-the-art systems by employing two key techniques, both of which are enabled by the matrix abstraction: exploiting extra parallelism using fine-grained pipelining and efficient on-demand failure recovery using a distributed fault-tolerant execution engine. We describe the design and implementation of MadLINQ and evaluate system performance using several real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EuroSys '22: Seventeenth European Conference on Computer Systems, Rennes, France, April 5 - 8, 2022 EuroSys '21: Sixteenth European Conference on Computer Systems, Online Event, United Kingdom, April 26-28, 2021 EuroSys '20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April 27-30, 2020 STRADS: a distributed framework for scheduled model parallel machine learning NChecker: saving mobile app developers from network disruptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1