高精度分布式存储器并行特征值求解器初步研究

Toshiyuki Imamura, S. Yamada, M. Machida
{"title":"高精度分布式存储器并行特征值求解器初步研究","authors":"Toshiyuki Imamura, S. Yamada, M. Machida","doi":"10.1109/SC.Companion.2012.255","DOIUrl":null,"url":null,"abstract":"This study covers the design and implementation of a DD (double-double) extended parallel eigenvalue solver, namely QPEigenK. We extended most of underlying numerical software layers from BLAS, LAPACK, and ScaLAPACK as well as MPI. Preliminary results show that QPEigenK performs on several platforms, and shows good accuracy and parallel efficiency. We can conclude that the DD format is reasonable data format instead of real (16) format from the viewpoint of programming and performance.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"85 1","pages":"1454-1455"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Abstract: Preliminary Report for a High Precision Distributed Memory Parallel Eigenvalue Solver\",\"authors\":\"Toshiyuki Imamura, S. Yamada, M. Machida\",\"doi\":\"10.1109/SC.Companion.2012.255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study covers the design and implementation of a DD (double-double) extended parallel eigenvalue solver, namely QPEigenK. We extended most of underlying numerical software layers from BLAS, LAPACK, and ScaLAPACK as well as MPI. Preliminary results show that QPEigenK performs on several platforms, and shows good accuracy and parallel efficiency. We can conclude that the DD format is reasonable data format instead of real (16) format from the viewpoint of programming and performance.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"85 1\",\"pages\":\"1454-1455\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究涵盖了双双扩展并行特征值求解器QPEigenK的设计与实现。我们从BLAS、LAPACK和ScaLAPACK以及MPI扩展了大多数底层数值软件层。初步结果表明,QPEigenK可以在多个平台上运行,具有良好的精度和并行效率。从编程和性能的角度来看,DD格式是合理的数据格式,而不是真实的(16)格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abstract: Preliminary Report for a High Precision Distributed Memory Parallel Eigenvalue Solver
This study covers the design and implementation of a DD (double-double) extended parallel eigenvalue solver, namely QPEigenK. We extended most of underlying numerical software layers from BLAS, LAPACK, and ScaLAPACK as well as MPI. Preliminary results show that QPEigenK performs on several platforms, and shows good accuracy and parallel efficiency. We can conclude that the DD format is reasonable data format instead of real (16) format from the viewpoint of programming and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1