{"title":"我们能从小数据中学到什么","authors":"Tamás Nyíri, Attila Kiss","doi":"10.36244/icj.2023.5.5","DOIUrl":null,"url":null,"abstract":"Over the past decade, deep learning has profoundly transformed the landscape of science and technology, from refining advertising algorithms to pioneering self-driving vehicles. While advancements in computational capabilities have fueled this evolution, the consistent availability of high quality training data is less of a given. In this work, the authors aim to provide a bird’s eye view on topics pertaining to small data scenarios, that is scenarios in which a less than desirable quality and quantity of data is given for supervised learning. We provide an overview for a set of challenges, proposed solution and at the end tie it together by practical guidelines on which techniques are useful in specific real-world scenarios.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What Can We Learn from Small Data\",\"authors\":\"Tamás Nyíri, Attila Kiss\",\"doi\":\"10.36244/icj.2023.5.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decade, deep learning has profoundly transformed the landscape of science and technology, from refining advertising algorithms to pioneering self-driving vehicles. While advancements in computational capabilities have fueled this evolution, the consistent availability of high quality training data is less of a given. In this work, the authors aim to provide a bird’s eye view on topics pertaining to small data scenarios, that is scenarios in which a less than desirable quality and quantity of data is given for supervised learning. We provide an overview for a set of challenges, proposed solution and at the end tie it together by practical guidelines on which techniques are useful in specific real-world scenarios.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36244/icj.2023.5.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36244/icj.2023.5.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Over the past decade, deep learning has profoundly transformed the landscape of science and technology, from refining advertising algorithms to pioneering self-driving vehicles. While advancements in computational capabilities have fueled this evolution, the consistent availability of high quality training data is less of a given. In this work, the authors aim to provide a bird’s eye view on topics pertaining to small data scenarios, that is scenarios in which a less than desirable quality and quantity of data is given for supervised learning. We provide an overview for a set of challenges, proposed solution and at the end tie it together by practical guidelines on which techniques are useful in specific real-world scenarios.