{"title":"基于搜索引擎建议和无监督子主题聚类的主要文档识别分类框架","authors":"Chen Zhao, T. Utsuro, Yasuhide Kawada","doi":"10.4018/IJCINI.20211001.OA42","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of automatic recognition of out-of-topic documents from a small set of similar documents that are expected to be on some common topic. The objective is to remove documents of noise from a set. A topic model based classification framework is proposed for the task of discovering out-of-topic documents. This paper introduces a new concept of annotated {\\it search engine suggests}, where this paper takes whichever search queries were used to search for a page as representations of content in that page. This paper adopted word embedding to create distributed representation of words and documents, and perform similarity comparison on search engine suggests. It is shown that search engine suggests can be highly accurate semantic representations of textual content and demonstrate that our document analysis algorithm using such representation for relevance measure gives satisfactory performance in terms of in-topic content filtering compared to the baseline technique of topic probability ranking.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"3 1","pages":"1-15"},"PeriodicalIF":0.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Classification Framework of Identifying Major Documents With Search Engine Suggestions and Unsupervised Subtopic Clustering\",\"authors\":\"Chen Zhao, T. Utsuro, Yasuhide Kawada\",\"doi\":\"10.4018/IJCINI.20211001.OA42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of automatic recognition of out-of-topic documents from a small set of similar documents that are expected to be on some common topic. The objective is to remove documents of noise from a set. A topic model based classification framework is proposed for the task of discovering out-of-topic documents. This paper introduces a new concept of annotated {\\\\it search engine suggests}, where this paper takes whichever search queries were used to search for a page as representations of content in that page. This paper adopted word embedding to create distributed representation of words and documents, and perform similarity comparison on search engine suggests. It is shown that search engine suggests can be highly accurate semantic representations of textual content and demonstrate that our document analysis algorithm using such representation for relevance measure gives satisfactory performance in terms of in-topic content filtering compared to the baseline technique of topic probability ranking.\",\"PeriodicalId\":43637,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\"3 1\",\"pages\":\"1-15\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJCINI.20211001.OA42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCINI.20211001.OA42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Classification Framework of Identifying Major Documents With Search Engine Suggestions and Unsupervised Subtopic Clustering
This paper addresses the problem of automatic recognition of out-of-topic documents from a small set of similar documents that are expected to be on some common topic. The objective is to remove documents of noise from a set. A topic model based classification framework is proposed for the task of discovering out-of-topic documents. This paper introduces a new concept of annotated {\it search engine suggests}, where this paper takes whichever search queries were used to search for a page as representations of content in that page. This paper adopted word embedding to create distributed representation of words and documents, and perform similarity comparison on search engine suggests. It is shown that search engine suggests can be highly accurate semantic representations of textual content and demonstrate that our document analysis algorithm using such representation for relevance measure gives satisfactory performance in terms of in-topic content filtering compared to the baseline technique of topic probability ranking.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.