作业车间调度问题的SMT求解方法:模型比较与性能评价

S. Roselli, Kristofer Bengtsson, K. Åkesson
{"title":"作业车间调度问题的SMT求解方法:模型比较与性能评价","authors":"S. Roselli, Kristofer Bengtsson, K. Åkesson","doi":"10.1109/COASE.2018.8560344","DOIUrl":null,"url":null,"abstract":"The optimal assignment of jobs to machines is a common problem when implementing automated production systems. A specific variant of this category is the job-shop scheduling problem (JSP) that is known to belong to the class of NP-hard problems. JSPs are typically either formulated as Mixed Integer Linear Programming (MILP) problems and solved by general-purpose-MILP solvers or approached using heuristic algorithms specifically designed for the purpose. During the last decade a new approach, satisfiability (SAT), led to develop solvers with incredible abilities in finding feasible solutions for hard combinatorial problems on Boolean variables. Moreover, an extension of SAT, Satisfability Modulo Theory (SMT), allows to formulate constraints involving linear operations over integers and reals and some SMT-solvers have been also extended with an optimizing tool. Since the JSP is a well-known hard combinatorial problem, it is interesting to evaluate how SMT-solvers perform in solving it and how they compare to traditional MILP-solvers. We therefore evaluate state-of-the-art MILP and SMT solvers on benchmark JSP instances and find that general-purpose open-source SMT-solvers are competitive against commercial MILP-solvers.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"32 1","pages":"547-552"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"SMT Solvers for Job-Shop Scheduling Problems: Models Comparison and Performance Evaluation\",\"authors\":\"S. Roselli, Kristofer Bengtsson, K. Åkesson\",\"doi\":\"10.1109/COASE.2018.8560344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal assignment of jobs to machines is a common problem when implementing automated production systems. A specific variant of this category is the job-shop scheduling problem (JSP) that is known to belong to the class of NP-hard problems. JSPs are typically either formulated as Mixed Integer Linear Programming (MILP) problems and solved by general-purpose-MILP solvers or approached using heuristic algorithms specifically designed for the purpose. During the last decade a new approach, satisfiability (SAT), led to develop solvers with incredible abilities in finding feasible solutions for hard combinatorial problems on Boolean variables. Moreover, an extension of SAT, Satisfability Modulo Theory (SMT), allows to formulate constraints involving linear operations over integers and reals and some SMT-solvers have been also extended with an optimizing tool. Since the JSP is a well-known hard combinatorial problem, it is interesting to evaluate how SMT-solvers perform in solving it and how they compare to traditional MILP-solvers. We therefore evaluate state-of-the-art MILP and SMT solvers on benchmark JSP instances and find that general-purpose open-source SMT-solvers are competitive against commercial MILP-solvers.\",\"PeriodicalId\":6518,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"32 1\",\"pages\":\"547-552\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2018.8560344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在实现自动化生产系统时,将工作最优分配给机器是一个常见的问题。这类问题的一个特定变体是作业车间调度问题(JSP),它属于np困难问题。jsp通常被表述为混合整数线性规划(MILP)问题,并由通用的MILP求解器解决,或者使用专门为此目的设计的启发式算法进行处理。在过去的十年中,一种新的求解方法,即可满足性(SAT),导致求解器在寻找布尔变量上的困难组合问题的可行解方面具有令人难以置信的能力。此外,SAT的扩展,可满足模理论(SMT),允许制定涉及整数和实数的线性运算的约束,一些SMT-解算器也被扩展了一个优化工具。由于JSP是一个众所周知的难组合问题,因此评估smt求解器在解决该问题时的表现以及它们与传统的milp求解器的比较是很有趣的。因此,我们在基准JSP实例上评估了最先进的MILP和SMT求解器,并发现通用的开源SMT求解器与商业MILP求解器具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SMT Solvers for Job-Shop Scheduling Problems: Models Comparison and Performance Evaluation
The optimal assignment of jobs to machines is a common problem when implementing automated production systems. A specific variant of this category is the job-shop scheduling problem (JSP) that is known to belong to the class of NP-hard problems. JSPs are typically either formulated as Mixed Integer Linear Programming (MILP) problems and solved by general-purpose-MILP solvers or approached using heuristic algorithms specifically designed for the purpose. During the last decade a new approach, satisfiability (SAT), led to develop solvers with incredible abilities in finding feasible solutions for hard combinatorial problems on Boolean variables. Moreover, an extension of SAT, Satisfability Modulo Theory (SMT), allows to formulate constraints involving linear operations over integers and reals and some SMT-solvers have been also extended with an optimizing tool. Since the JSP is a well-known hard combinatorial problem, it is interesting to evaluate how SMT-solvers perform in solving it and how they compare to traditional MILP-solvers. We therefore evaluate state-of-the-art MILP and SMT solvers on benchmark JSP instances and find that general-purpose open-source SMT-solvers are competitive against commercial MILP-solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Electric-Field-Based Nanowire Characterization, Manipulation, and Assembly Dynamic Sampling for Feasibility Determination Gripping Positions Selection for Unfolding a Rectangular Cloth Product Multi-Robot Routing Algorithms for Robots Operating in Vineyards Enhancing Data-Driven Models with Knowledge from Engineering Models in Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1