基于孔隙力学的复合材料制造整体建模

IF 1.8 Q3 ENGINEERING, MANUFACTURING Advanced Manufacturing: Polymer & Composites Science Pub Date : 2016-01-02 DOI:10.1080/20550340.2016.1141457
M. Rouhi, M. Wysocki, R. Larsson
{"title":"基于孔隙力学的复合材料制造整体建模","authors":"M. Rouhi, M. Wysocki, R. Larsson","doi":"10.1080/20550340.2016.1141457","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper, we present a novel finite-element method capable of handling most of the physics arising in the resin wet-out step for any composite system and processing case. The method is based on a compressible two-phase continuum formulation where a key feature is to model the involved physics via innovative use of the compressibility of the phases. On the one hand, the fluid-phase compressibility is used to capture the physics of the advancing resin front as well as the physics behind the flow front. On the other hand, solid-phase compressibility is used to model micro-infiltration of the resin and the corresponding preform compaction, essentially considered as a fluid sink problem. Finally, the generic porous media model is formulated in the finite strain regime. The model is implemented and demonstrated for different manufacturing methods and the results with respect to each example are presented. The degree of saturation, pressure distribution, preform deformation, and reaction forces are some of the post-processed results for different manufacturing methods. The ultimate goal of this contribution is to establish a unified generic and general simulation tool for structural (long fiber) composite processing where, to this date, there is no single FE-based tool available commercially for this purpose.","PeriodicalId":7243,"journal":{"name":"Advanced Manufacturing: Polymer & Composites Science","volume":"93 1","pages":"14 - 26"},"PeriodicalIF":1.8000,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Holistic modeling of composites manufacturing using poromechanics\",\"authors\":\"M. Rouhi, M. Wysocki, R. Larsson\",\"doi\":\"10.1080/20550340.2016.1141457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present paper, we present a novel finite-element method capable of handling most of the physics arising in the resin wet-out step for any composite system and processing case. The method is based on a compressible two-phase continuum formulation where a key feature is to model the involved physics via innovative use of the compressibility of the phases. On the one hand, the fluid-phase compressibility is used to capture the physics of the advancing resin front as well as the physics behind the flow front. On the other hand, solid-phase compressibility is used to model micro-infiltration of the resin and the corresponding preform compaction, essentially considered as a fluid sink problem. Finally, the generic porous media model is formulated in the finite strain regime. The model is implemented and demonstrated for different manufacturing methods and the results with respect to each example are presented. The degree of saturation, pressure distribution, preform deformation, and reaction forces are some of the post-processed results for different manufacturing methods. The ultimate goal of this contribution is to establish a unified generic and general simulation tool for structural (long fiber) composite processing where, to this date, there is no single FE-based tool available commercially for this purpose.\",\"PeriodicalId\":7243,\"journal\":{\"name\":\"Advanced Manufacturing: Polymer & Composites Science\",\"volume\":\"93 1\",\"pages\":\"14 - 26\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2016-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Manufacturing: Polymer & Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20550340.2016.1141457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Manufacturing: Polymer & Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20550340.2016.1141457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了一种新的有限元方法,能够处理任何复合材料体系和加工情况下树脂湿化步骤中产生的大部分物理现象。该方法基于可压缩的两相连续体公式,其中一个关键特征是通过创新地使用相的可压缩性来模拟所涉及的物理。一方面,流体压缩率用于捕捉前进的树脂前沿的物理特性以及流前沿背后的物理特性。另一方面,固相压缩率用于模拟树脂的微渗透和相应的预成型压实,本质上被认为是一个流体沉降问题。最后,建立了有限应变条件下的通用多孔介质模型。该模型针对不同的制造方法进行了实现和验证,并给出了每个实例的结果。饱和度、压力分布、预成形变形和反作用力是不同制造方法的一些后处理结果。这一贡献的最终目标是为结构(长纤维)复合材料加工建立一个统一的通用和通用模拟工具,到目前为止,还没有单一的基于fe的商业工具可用于此目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Holistic modeling of composites manufacturing using poromechanics
Abstract In the present paper, we present a novel finite-element method capable of handling most of the physics arising in the resin wet-out step for any composite system and processing case. The method is based on a compressible two-phase continuum formulation where a key feature is to model the involved physics via innovative use of the compressibility of the phases. On the one hand, the fluid-phase compressibility is used to capture the physics of the advancing resin front as well as the physics behind the flow front. On the other hand, solid-phase compressibility is used to model micro-infiltration of the resin and the corresponding preform compaction, essentially considered as a fluid sink problem. Finally, the generic porous media model is formulated in the finite strain regime. The model is implemented and demonstrated for different manufacturing methods and the results with respect to each example are presented. The degree of saturation, pressure distribution, preform deformation, and reaction forces are some of the post-processed results for different manufacturing methods. The ultimate goal of this contribution is to establish a unified generic and general simulation tool for structural (long fiber) composite processing where, to this date, there is no single FE-based tool available commercially for this purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
11
审稿时长
16 weeks
期刊最新文献
Mitigating void growth in out-of-autoclave prepreg processing using a semi-permeable membrane to maintain resin pressure Analysis and development of a brazing method to weld carbon fiber-reinforced poly ether ketone ketone with amorphous PEKK In-situ analysis of cocured scarf patch repairs Bending properties of structural foams manufactured in a hot press process Experimental validation of co-cure process of honeycomb sandwich structures simulation: adhesive fillet shape and bond-line porosity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1