对准尺度不变LBO特征函数的形状对应

Amit Bracha, Oshri Halimi, R. Kimmel
{"title":"对准尺度不变LBO特征函数的形状对应","authors":"Amit Bracha, Oshri Halimi, R. Kimmel","doi":"10.2312/3dor.20201159","DOIUrl":null,"url":null,"abstract":"When matching non-rigid shapes, the regular or scale-invariant Laplace-Beltrami Operator (LBO) eigenfunctions could potentially serve as intrinsic descriptors which are invariant to isometric transformations. However, the computed eigenfunctions of two quasi-isometric surfaces could be substantially different. Such discrepancies include sign ambiguities and possible rotations and reflections within subspaces spanned by eigenfunctions that correspond to similar eigenvalues. Thus, without aligning the corresponding eigenspaces it is difficult to use the eigenfunctions as descriptors. Here, we propose to model the relative transformation between the eigenspaces of two quasi-isometric shapes using a band orthogonal matrix, as well as present a framework that aims to estimate this matrix. Estimating this transformation allows us to align the eigenfunctions of one shape with those of the other, that could then be used as intrinsic, consistent, and robust descriptors. To estimate the transformation we use an unsupervised spectral-net framework that uses descriptors given by the eigenfunctions of the scale-invariant version of the LBO. Then, using a spectral training mechanism, we find a band limited orthogonal matrix that aligns the two sets of eigenfunctions.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"27 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Shape Correspondence by Aligning Scale-invariant LBO Eigenfunctions\",\"authors\":\"Amit Bracha, Oshri Halimi, R. Kimmel\",\"doi\":\"10.2312/3dor.20201159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When matching non-rigid shapes, the regular or scale-invariant Laplace-Beltrami Operator (LBO) eigenfunctions could potentially serve as intrinsic descriptors which are invariant to isometric transformations. However, the computed eigenfunctions of two quasi-isometric surfaces could be substantially different. Such discrepancies include sign ambiguities and possible rotations and reflections within subspaces spanned by eigenfunctions that correspond to similar eigenvalues. Thus, without aligning the corresponding eigenspaces it is difficult to use the eigenfunctions as descriptors. Here, we propose to model the relative transformation between the eigenspaces of two quasi-isometric shapes using a band orthogonal matrix, as well as present a framework that aims to estimate this matrix. Estimating this transformation allows us to align the eigenfunctions of one shape with those of the other, that could then be used as intrinsic, consistent, and robust descriptors. To estimate the transformation we use an unsupervised spectral-net framework that uses descriptors given by the eigenfunctions of the scale-invariant version of the LBO. Then, using a spectral training mechanism, we find a band limited orthogonal matrix that aligns the two sets of eigenfunctions.\",\"PeriodicalId\":72958,\"journal\":{\"name\":\"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval\",\"volume\":\"27 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/3dor.20201159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/3dor.20201159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

当匹配非刚性形状时,正则或尺度不变的拉普拉斯-贝尔特拉米算子(LBO)特征函数可以作为等距变换不变的内在描述子。然而,计算出的两个准等距曲面的特征函数可能有很大的不同。这种差异包括符号歧义和可能的旋转和反射在子空间内由对应于相似特征值的特征函数所跨越。因此,如果不对齐相应的特征空间,就很难使用特征函数作为描述符。在这里,我们提出用带正交矩阵来模拟两个准等距形状的特征空间之间的相对变换,并提出了一个旨在估计该矩阵的框架。估计这个变换使我们能够将一个形状的特征函数与另一个形状的特征函数对齐,然后可以将其用作内在的,一致的和鲁棒的描述子。为了估计变换,我们使用无监督谱网框架,该框架使用由LBO的尺度不变版本的特征函数给出的描述符。然后,利用谱训练机制,我们找到了一个带限正交矩阵,使两组特征函数对齐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shape Correspondence by Aligning Scale-invariant LBO Eigenfunctions
When matching non-rigid shapes, the regular or scale-invariant Laplace-Beltrami Operator (LBO) eigenfunctions could potentially serve as intrinsic descriptors which are invariant to isometric transformations. However, the computed eigenfunctions of two quasi-isometric surfaces could be substantially different. Such discrepancies include sign ambiguities and possible rotations and reflections within subspaces spanned by eigenfunctions that correspond to similar eigenvalues. Thus, without aligning the corresponding eigenspaces it is difficult to use the eigenfunctions as descriptors. Here, we propose to model the relative transformation between the eigenspaces of two quasi-isometric shapes using a band orthogonal matrix, as well as present a framework that aims to estimate this matrix. Estimating this transformation allows us to align the eigenfunctions of one shape with those of the other, that could then be used as intrinsic, consistent, and robust descriptors. To estimate the transformation we use an unsupervised spectral-net framework that uses descriptors given by the eigenfunctions of the scale-invariant version of the LBO. Then, using a spectral training mechanism, we find a band limited orthogonal matrix that aligns the two sets of eigenfunctions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AvatarGo: Plug and Play self-avatars for VR Reconstructing 3D Face of Infants in Social Interactions Using Morphable Models of Non-Infants. Dyani White Hawk: Speaking to Relatives, Kemper Museum of Contemporary Art, Kansas City, MO, 18 February–16 May 2021 Andy Warhol, Tate Modern, London, 12 March–15 November 2020 Investigating Fluidity in Hans Haacke’s Condensation Cube (1965) and Gustave Metzger’s Liquid Crystal Environment (1965)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1