{"title":"一种基于量子点的荧光传感器,用于检测汞离子","authors":"Yang Qin, Yunhan Yang, Y. Ho, Ling Zhang","doi":"10.1139/cjc-2022-0145","DOIUrl":null,"url":null,"abstract":"Mercury (II) ion (Hg2+) is one of the most widespread pollutants that poses a serious threat to public health and the environment. Research efforts on selective and sensitive detection of Hg2+, have therefore drawn considerable attention in recent years. Herein, we report a facile approach to detect Hg2+ based on quantum dots (QDs)-based nanosensor. The two single-stranded DNA (ssDNA) used in this work are modified with biotin (ssDNA-biotin) and fluorescence quencher BHQ2 (ssDNA-BHQ2). These two strands are complementary but with TTT-recognized base sequences for the Hg2+ to form a T-Hg2+-T complex. The biotin-modified ssDNA (ssDNA-biotin) is first bound to the streptavidin-modified QDs, forming a QDs/ssDNA-biotin assembly, which may be further hybridized with the ssDNA-BHQ2, producing a complex of QDs/ssDNA-biotin/ssDNA-BHQ2. The BHQ2 serves as an effective quencher of QDs with the QDs and BHQ2 in a proximity within the QDs/ssDNA-biotin/ssDNA-BHQ2 complex. The decrease of fluorescence intensity therefore serves as an indication of the presence of Hg2+. The fluorescence reduction is observed linearly correlated with the concentration of Hg2+ in the range of 1.0-20.0 nM, with a detection limit at 0.87 nM. The presented QDs-based method is expected to provide a simple, rapid and sensitive method for the detection of Hg2+ in environmental water samples.","PeriodicalId":9420,"journal":{"name":"Canadian Journal of Chemistry","volume":"19 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fluorescence sensor based on quantum dots for the detection of mercury ions\",\"authors\":\"Yang Qin, Yunhan Yang, Y. Ho, Ling Zhang\",\"doi\":\"10.1139/cjc-2022-0145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mercury (II) ion (Hg2+) is one of the most widespread pollutants that poses a serious threat to public health and the environment. Research efforts on selective and sensitive detection of Hg2+, have therefore drawn considerable attention in recent years. Herein, we report a facile approach to detect Hg2+ based on quantum dots (QDs)-based nanosensor. The two single-stranded DNA (ssDNA) used in this work are modified with biotin (ssDNA-biotin) and fluorescence quencher BHQ2 (ssDNA-BHQ2). These two strands are complementary but with TTT-recognized base sequences for the Hg2+ to form a T-Hg2+-T complex. The biotin-modified ssDNA (ssDNA-biotin) is first bound to the streptavidin-modified QDs, forming a QDs/ssDNA-biotin assembly, which may be further hybridized with the ssDNA-BHQ2, producing a complex of QDs/ssDNA-biotin/ssDNA-BHQ2. The BHQ2 serves as an effective quencher of QDs with the QDs and BHQ2 in a proximity within the QDs/ssDNA-biotin/ssDNA-BHQ2 complex. The decrease of fluorescence intensity therefore serves as an indication of the presence of Hg2+. The fluorescence reduction is observed linearly correlated with the concentration of Hg2+ in the range of 1.0-20.0 nM, with a detection limit at 0.87 nM. The presented QDs-based method is expected to provide a simple, rapid and sensitive method for the detection of Hg2+ in environmental water samples.\",\"PeriodicalId\":9420,\"journal\":{\"name\":\"Canadian Journal of Chemistry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1139/cjc-2022-0145\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1139/cjc-2022-0145","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A fluorescence sensor based on quantum dots for the detection of mercury ions
Mercury (II) ion (Hg2+) is one of the most widespread pollutants that poses a serious threat to public health and the environment. Research efforts on selective and sensitive detection of Hg2+, have therefore drawn considerable attention in recent years. Herein, we report a facile approach to detect Hg2+ based on quantum dots (QDs)-based nanosensor. The two single-stranded DNA (ssDNA) used in this work are modified with biotin (ssDNA-biotin) and fluorescence quencher BHQ2 (ssDNA-BHQ2). These two strands are complementary but with TTT-recognized base sequences for the Hg2+ to form a T-Hg2+-T complex. The biotin-modified ssDNA (ssDNA-biotin) is first bound to the streptavidin-modified QDs, forming a QDs/ssDNA-biotin assembly, which may be further hybridized with the ssDNA-BHQ2, producing a complex of QDs/ssDNA-biotin/ssDNA-BHQ2. The BHQ2 serves as an effective quencher of QDs with the QDs and BHQ2 in a proximity within the QDs/ssDNA-biotin/ssDNA-BHQ2 complex. The decrease of fluorescence intensity therefore serves as an indication of the presence of Hg2+. The fluorescence reduction is observed linearly correlated with the concentration of Hg2+ in the range of 1.0-20.0 nM, with a detection limit at 0.87 nM. The presented QDs-based method is expected to provide a simple, rapid and sensitive method for the detection of Hg2+ in environmental water samples.
期刊介绍:
Published since 1929, the Canadian Journal of Chemistry reports current research findings in all branches of chemistry. It includes the traditional areas of analytical, inorganic, organic, and physical-theoretical chemistry and newer interdisciplinary areas such as materials science, spectroscopy, chemical physics, and biological, medicinal and environmental chemistry. Articles describing original research are welcomed.