一种统一参数划分的细分框架

Amirhessam Moltaji, Adam Runions, F. Samavati
{"title":"一种统一参数划分的细分框架","authors":"Amirhessam Moltaji, Adam Runions, F. Samavati","doi":"10.20380/GI2016.04","DOIUrl":null,"url":null,"abstract":"Partition of Unity Parametrics (PUPs) are a generalization of NURBS that allow us to use arbitrary basis functions for modeling parametric curves and surfaces. One interesting problem is finding subdivision schemes for this recently developed and flexible class of parametrics. In this paper, we introduce a systematic approach for determining uniform subdivision of PUPs curves and tensorproduct surfaces. Our approach formulates PUPs subdivision as a least squares problem, which enables us to find exact subdivision filters for refinable basis functions and optimal approximate schemes for irrefinable ones. To illustrate this approach, we provide sample subdivision schemes with different properties, which are further demonstrated by presenting various examples.","PeriodicalId":93493,"journal":{"name":"Proceedings. Graphics Interface (Conference)","volume":"9 1","pages":"21-31"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Subdivision Framework for Partition of Unity Parametrics\",\"authors\":\"Amirhessam Moltaji, Adam Runions, F. Samavati\",\"doi\":\"10.20380/GI2016.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partition of Unity Parametrics (PUPs) are a generalization of NURBS that allow us to use arbitrary basis functions for modeling parametric curves and surfaces. One interesting problem is finding subdivision schemes for this recently developed and flexible class of parametrics. In this paper, we introduce a systematic approach for determining uniform subdivision of PUPs curves and tensorproduct surfaces. Our approach formulates PUPs subdivision as a least squares problem, which enables us to find exact subdivision filters for refinable basis functions and optimal approximate schemes for irrefinable ones. To illustrate this approach, we provide sample subdivision schemes with different properties, which are further demonstrated by presenting various examples.\",\"PeriodicalId\":93493,\"journal\":{\"name\":\"Proceedings. Graphics Interface (Conference)\",\"volume\":\"9 1\",\"pages\":\"21-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Graphics Interface (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20380/GI2016.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Graphics Interface (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20380/GI2016.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

统一参数划分(PUPs)是NURBS的一种推广,它允许我们使用任意基函数来建模参数化曲线和曲面。一个有趣的问题是为这类最近发展起来的灵活的参数找到细分方案。在本文中,我们介绍了一种系统的方法来确定PUPs曲线和张量积曲面的均匀细分。我们的方法将PUPs细分为最小二乘问题,这使我们能够找到可细化基函数的精确细分滤波器和不可细化基函数的最优近似方案。为了说明这种方法,我们提供了具有不同属性的细分方案样本,并通过各种示例进一步演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Subdivision Framework for Partition of Unity Parametrics
Partition of Unity Parametrics (PUPs) are a generalization of NURBS that allow us to use arbitrary basis functions for modeling parametric curves and surfaces. One interesting problem is finding subdivision schemes for this recently developed and flexible class of parametrics. In this paper, we introduce a systematic approach for determining uniform subdivision of PUPs curves and tensorproduct surfaces. Our approach formulates PUPs subdivision as a least squares problem, which enables us to find exact subdivision filters for refinable basis functions and optimal approximate schemes for irrefinable ones. To illustrate this approach, we provide sample subdivision schemes with different properties, which are further demonstrated by presenting various examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Towards Enabling Blind People to Fill Out Paper Forms with a Wearable Smartphone Assistant. BayesGaze: A Bayesian Approach to Eye-Gaze Based Target Selection. Personal+Context navigation: combining AR and shared displays in network path-following Interactive Exploration of Genomic Conservation AffordIt!: A Tool for Authoring Object Component Behavior in Virtual Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1