挖掘概率调色板以总结艺术品收藏中的颜色使用

Ying Cao, Antoni B. Chan, Rynson W. H. Lau
{"title":"挖掘概率调色板以总结艺术品收藏中的颜色使用","authors":"Ying Cao, Antoni B. Chan, Rynson W. H. Lau","doi":"10.1145/3139295.3139296","DOIUrl":null,"url":null,"abstract":"Artists and designers often use examples to find inspirational ideas for using colors. While growing public art repositories provide more examples to choose from, understanding the color use in such large artwork collections can be challenging. In this paper, we present a novel technique for summarizing the color use in large artwork collections. Our technique is based on a novel representation, probabilistic color palettes, which can intuitively summarize the contextual and stylistic use of colors in a collection of artworks. Unlike traditional color palettes that only encapsulate what colors are used using a compact set of representative colors, probabilistic color palettes encode the knowledge of how the colors are used in terms of frequencies, positions, and sizes, using an intuitive set of probability distributions. Given a collection of artworks organized by artist, we learn the probabilistic color palettes using a probabilistic colorization model, which describes the colorization process in a probabilistic framework and considers the impact of both spatial and semantic factors upon the colorization process. The learned probabilistic color palettes allows users to quickly understand the color use within the collection. We present results on a large collection of artworks by different artists, and evaluate the effectiveness of our probabilistic color palettes in a user study.","PeriodicalId":92446,"journal":{"name":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mining probabilistic color palettes for summarizing color use in artwork collections\",\"authors\":\"Ying Cao, Antoni B. Chan, Rynson W. H. Lau\",\"doi\":\"10.1145/3139295.3139296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artists and designers often use examples to find inspirational ideas for using colors. While growing public art repositories provide more examples to choose from, understanding the color use in such large artwork collections can be challenging. In this paper, we present a novel technique for summarizing the color use in large artwork collections. Our technique is based on a novel representation, probabilistic color palettes, which can intuitively summarize the contextual and stylistic use of colors in a collection of artworks. Unlike traditional color palettes that only encapsulate what colors are used using a compact set of representative colors, probabilistic color palettes encode the knowledge of how the colors are used in terms of frequencies, positions, and sizes, using an intuitive set of probability distributions. Given a collection of artworks organized by artist, we learn the probabilistic color palettes using a probabilistic colorization model, which describes the colorization process in a probabilistic framework and considers the impact of both spatial and semantic factors upon the colorization process. The learned probabilistic color palettes allows users to quickly understand the color use within the collection. We present results on a large collection of artworks by different artists, and evaluate the effectiveness of our probabilistic color palettes in a user study.\",\"PeriodicalId\":92446,\"journal\":{\"name\":\"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139295.3139296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139295.3139296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

艺术家和设计师经常使用例子来寻找使用颜色的灵感。虽然越来越多的公共艺术库提供了更多的例子可供选择,但理解如此庞大的艺术品收藏中的颜色使用可能具有挑战性。在本文中,我们提出了一种总结大型艺术品收藏中颜色使用的新技术。我们的技术是基于一种新颖的表示,即概率调色板,它可以直观地总结艺术作品中颜色的上下文和风格使用。与传统的调色板不同,传统的调色板只使用一组紧凑的代表性颜色来封装所使用的颜色,而概率调色板使用一组直观的概率分布来编码关于颜色如何在频率、位置和大小方面使用的知识。给定艺术家组织的艺术品集合,我们使用概率着色模型学习概率调色板,该模型在概率框架中描述了着色过程,并考虑了空间和语义因素对着色过程的影响。学习到的概率调色板允许用户快速了解集合中的颜色使用情况。我们展示了不同艺术家的大量艺术作品的结果,并在用户研究中评估了我们的概率调色板的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining probabilistic color palettes for summarizing color use in artwork collections
Artists and designers often use examples to find inspirational ideas for using colors. While growing public art repositories provide more examples to choose from, understanding the color use in such large artwork collections can be challenging. In this paper, we present a novel technique for summarizing the color use in large artwork collections. Our technique is based on a novel representation, probabilistic color palettes, which can intuitively summarize the contextual and stylistic use of colors in a collection of artworks. Unlike traditional color palettes that only encapsulate what colors are used using a compact set of representative colors, probabilistic color palettes encode the knowledge of how the colors are used in terms of frequencies, positions, and sizes, using an intuitive set of probability distributions. Given a collection of artworks organized by artist, we learn the probabilistic color palettes using a probabilistic colorization model, which describes the colorization process in a probabilistic framework and considers the impact of both spatial and semantic factors upon the colorization process. The learned probabilistic color palettes allows users to quickly understand the color use within the collection. We present results on a large collection of artworks by different artists, and evaluate the effectiveness of our probabilistic color palettes in a user study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal tree reordering for group-in-a-box graph layouts Winding angle assisted particle tracing in distribution-based vector field Development of a visual analytics system for cell division dynamics in early C.elegans embryos A visual causal exploration framework case study: a torrential rain and a flash flood in Kobe city Parallel particle-based volume rendering using adaptive particle size adjustment technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1