Mohawk:验证访问控制策略的抽象-细化和边界估计

K. Jayaraman, Mahesh V. Tripunitara, Vijay Ganesh, M. Rinard, S. Chapin
{"title":"Mohawk:验证访问控制策略的抽象-细化和边界估计","authors":"K. Jayaraman, Mahesh V. Tripunitara, Vijay Ganesh, M. Rinard, S. Chapin","doi":"10.1145/2445566.2445570","DOIUrl":null,"url":null,"abstract":"Verifying that access-control systems maintain desired security properties is recognized as an important problem in security. Enterprise access-control systems have grown to protect tens of thousands of resources, and there is a need for verification to scale commensurately. We present techniques for abstraction-refinement and bound-estimation for bounded model checkers to automatically find errors in Administrative Role-Based Access Control (ARBAC) security policies. ARBAC is the first and most comprehensive administrative scheme for Role-Based Access Control (RBAC) systems. In the abstraction-refinement portion of our approach, we identify and discard roles that are unlikely to be relevant to the verification question (the abstraction step). We then restore such abstracted roles incrementally (the refinement steps). In the bound-estimation portion of our approach, we lower the estimate of the diameter of the reachability graph from the worst-case by recognizing relationships between roles and state-change rules. Our techniques complement one another, and are used with conventional bounded model checking. Our approach is sound and complete: an error is found if and only if it exists. We have implemented our technique in an access-control policy analysis tool called Mohawk. We show empirically that Mohawk scales well to realistic policies, and provide a comparison with prior tools.","PeriodicalId":50912,"journal":{"name":"ACM Transactions on Information and System Security","volume":"19 1","pages":"18:1-18:28"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Mohawk: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies\",\"authors\":\"K. Jayaraman, Mahesh V. Tripunitara, Vijay Ganesh, M. Rinard, S. Chapin\",\"doi\":\"10.1145/2445566.2445570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Verifying that access-control systems maintain desired security properties is recognized as an important problem in security. Enterprise access-control systems have grown to protect tens of thousands of resources, and there is a need for verification to scale commensurately. We present techniques for abstraction-refinement and bound-estimation for bounded model checkers to automatically find errors in Administrative Role-Based Access Control (ARBAC) security policies. ARBAC is the first and most comprehensive administrative scheme for Role-Based Access Control (RBAC) systems. In the abstraction-refinement portion of our approach, we identify and discard roles that are unlikely to be relevant to the verification question (the abstraction step). We then restore such abstracted roles incrementally (the refinement steps). In the bound-estimation portion of our approach, we lower the estimate of the diameter of the reachability graph from the worst-case by recognizing relationships between roles and state-change rules. Our techniques complement one another, and are used with conventional bounded model checking. Our approach is sound and complete: an error is found if and only if it exists. We have implemented our technique in an access-control policy analysis tool called Mohawk. We show empirically that Mohawk scales well to realistic policies, and provide a comparison with prior tools.\",\"PeriodicalId\":50912,\"journal\":{\"name\":\"ACM Transactions on Information and System Security\",\"volume\":\"19 1\",\"pages\":\"18:1-18:28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information and System Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2445566.2445570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2445566.2445570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 32

摘要

验证访问控制系统保持预期的安全属性是公认的安全中的一个重要问题。企业访问控制系统已经发展到可以保护数以万计的资源,因此需要相应地进行验证。我们提出了用于有界模型检查器的抽象细化和边界估计技术,以自动发现基于管理角色的访问控制(ARBAC)安全策略中的错误。ARBAC是基于角色的访问控制(RBAC)系统的第一个也是最全面的管理方案。在我们的方法的抽象细化部分,我们识别并丢弃不太可能与验证问题相关的角色(抽象步骤)。然后我们逐渐恢复这些抽象的角色(细化步骤)。在我们方法的边界估计部分,我们通过识别角色和状态变化规则之间的关系,降低了最坏情况下可达图直径的估计。我们的技术相互补充,并与传统的有界模型检查一起使用。我们的方法是健全和完整的:当且仅当错误存在时才会发现错误。我们已经在一个名为Mohawk的访问控制策略分析工具中实现了我们的技术。我们从经验上证明了Mohawk可以很好地适用于现实政策,并提供了与先前工具的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mohawk: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies
Verifying that access-control systems maintain desired security properties is recognized as an important problem in security. Enterprise access-control systems have grown to protect tens of thousands of resources, and there is a need for verification to scale commensurately. We present techniques for abstraction-refinement and bound-estimation for bounded model checkers to automatically find errors in Administrative Role-Based Access Control (ARBAC) security policies. ARBAC is the first and most comprehensive administrative scheme for Role-Based Access Control (RBAC) systems. In the abstraction-refinement portion of our approach, we identify and discard roles that are unlikely to be relevant to the verification question (the abstraction step). We then restore such abstracted roles incrementally (the refinement steps). In the bound-estimation portion of our approach, we lower the estimate of the diameter of the reachability graph from the worst-case by recognizing relationships between roles and state-change rules. Our techniques complement one another, and are used with conventional bounded model checking. Our approach is sound and complete: an error is found if and only if it exists. We have implemented our technique in an access-control policy analysis tool called Mohawk. We show empirically that Mohawk scales well to realistic policies, and provide a comparison with prior tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Information and System Security
ACM Transactions on Information and System Security 工程技术-计算机:信息系统
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
3.3 months
期刊介绍: ISSEC is a scholarly, scientific journal that publishes original research papers in all areas of information and system security, including technologies, systems, applications, and policies.
期刊最新文献
An Efficient User Verification System Using Angle-Based Mouse Movement Biometrics A New Framework for Privacy-Preserving Aggregation of Time-Series Data Behavioral Study of Users When Interacting with Active Honeytokens Model Checking Distributed Mandatory Access Control Policies Randomization-Based Intrusion Detection System for Advanced Metering Infrastructure*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1