M. Elhamdadi, A. Makhlouf, S. Silvestrov, E. Zappala
{"title":"纠缠代数的导数问题","authors":"M. Elhamdadi, A. Makhlouf, S. Silvestrov, E. Zappala","doi":"10.1142/s0218196722500424","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to introduce and investigate the notion of derivation for quandle algebras. More precisely, we describe the symmetries on structure constants providing a characterization for a linear map to be a derivation. We obtain a complete characterization of derivations in the case of quandle algebras of dihedral quandles over fields of characteristic zero, and provide the dimensionality of the Lie algebra of derivations. Many explicit examples and computations are given over both zero and positive characteristic. Furthermore, we investigate inner derivations, in the sense of Schafer for non-associative structures. We obtain necessary conditions for the Lie transformation algebra of quandle algebras of Alexander quandles, with explicit computations in low dimensions.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"44 1","pages":"985-1007"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Derivation problem for quandle algebras\",\"authors\":\"M. Elhamdadi, A. Makhlouf, S. Silvestrov, E. Zappala\",\"doi\":\"10.1142/s0218196722500424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to introduce and investigate the notion of derivation for quandle algebras. More precisely, we describe the symmetries on structure constants providing a characterization for a linear map to be a derivation. We obtain a complete characterization of derivations in the case of quandle algebras of dihedral quandles over fields of characteristic zero, and provide the dimensionality of the Lie algebra of derivations. Many explicit examples and computations are given over both zero and positive characteristic. Furthermore, we investigate inner derivations, in the sense of Schafer for non-associative structures. We obtain necessary conditions for the Lie transformation algebra of quandle algebras of Alexander quandles, with explicit computations in low dimensions.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"44 1\",\"pages\":\"985-1007\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The purpose of this paper is to introduce and investigate the notion of derivation for quandle algebras. More precisely, we describe the symmetries on structure constants providing a characterization for a linear map to be a derivation. We obtain a complete characterization of derivations in the case of quandle algebras of dihedral quandles over fields of characteristic zero, and provide the dimensionality of the Lie algebra of derivations. Many explicit examples and computations are given over both zero and positive characteristic. Furthermore, we investigate inner derivations, in the sense of Schafer for non-associative structures. We obtain necessary conditions for the Lie transformation algebra of quandle algebras of Alexander quandles, with explicit computations in low dimensions.