{"title":"使用轻量级编译器中断,对共享线程进行频繁的后台轮询","authors":"Nilanjana Basu, C. Montanari, Jakob Eriksson","doi":"10.1145/3453483.3454107","DOIUrl":null,"url":null,"abstract":"Recent work in networking, storage and multi-threading has demonstrated improved performance and scalability by replacing kernel-mode interrupts with high-rate user-space polling. Typically, such polling is performed by a dedicated core. Compiler Interrupts (CIs) instead enable efficient, automatic high-rate polling on a shared thread, which performs other work between polls. CIs are instrumentation-based and light-weight, allowing frequent interrupts with little performance impact. For example, when targeting a 5,000 cycle interval, the median overhead of our fastest CI design is 4% vs. 800% for hardware interrupts, across programs in the SPLASH-2, Phoenix and Parsec benchmark suites running with 32 threads. We evaluate CIs on three systems-level applications: (a) kernel bypass networking with mTCP, (b) joint kernel bypass networking and CPU scheduling with Shenango, and (c) delegation, a message-passing alternative to locking, with FFWD. For each application, we find that CIs offer compelling qualitative and quantitative improvements over the current state of the art. For example, CI-based mTCP achieves ≈2× stock mTCP throughput on a sample HTTP application.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Frequent background polling on a shared thread, using light-weight compiler interrupts\",\"authors\":\"Nilanjana Basu, C. Montanari, Jakob Eriksson\",\"doi\":\"10.1145/3453483.3454107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work in networking, storage and multi-threading has demonstrated improved performance and scalability by replacing kernel-mode interrupts with high-rate user-space polling. Typically, such polling is performed by a dedicated core. Compiler Interrupts (CIs) instead enable efficient, automatic high-rate polling on a shared thread, which performs other work between polls. CIs are instrumentation-based and light-weight, allowing frequent interrupts with little performance impact. For example, when targeting a 5,000 cycle interval, the median overhead of our fastest CI design is 4% vs. 800% for hardware interrupts, across programs in the SPLASH-2, Phoenix and Parsec benchmark suites running with 32 threads. We evaluate CIs on three systems-level applications: (a) kernel bypass networking with mTCP, (b) joint kernel bypass networking and CPU scheduling with Shenango, and (c) delegation, a message-passing alternative to locking, with FFWD. For each application, we find that CIs offer compelling qualitative and quantitative improvements over the current state of the art. For example, CI-based mTCP achieves ≈2× stock mTCP throughput on a sample HTTP application.\",\"PeriodicalId\":20557,\"journal\":{\"name\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453483.3454107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frequent background polling on a shared thread, using light-weight compiler interrupts
Recent work in networking, storage and multi-threading has demonstrated improved performance and scalability by replacing kernel-mode interrupts with high-rate user-space polling. Typically, such polling is performed by a dedicated core. Compiler Interrupts (CIs) instead enable efficient, automatic high-rate polling on a shared thread, which performs other work between polls. CIs are instrumentation-based and light-weight, allowing frequent interrupts with little performance impact. For example, when targeting a 5,000 cycle interval, the median overhead of our fastest CI design is 4% vs. 800% for hardware interrupts, across programs in the SPLASH-2, Phoenix and Parsec benchmark suites running with 32 threads. We evaluate CIs on three systems-level applications: (a) kernel bypass networking with mTCP, (b) joint kernel bypass networking and CPU scheduling with Shenango, and (c) delegation, a message-passing alternative to locking, with FFWD. For each application, we find that CIs offer compelling qualitative and quantitative improvements over the current state of the art. For example, CI-based mTCP achieves ≈2× stock mTCP throughput on a sample HTTP application.