{"title":"采用耦合萃取-泡沫分馏分离牛膝总皂苷的新工艺","authors":"Linlin Ding, Yanji Wang, Zhaoliang Wu, Wei Liu, Rui Li, Yanyan Wang","doi":"10.1080/10826068.2015.1135448","DOIUrl":null,"url":null,"abstract":"ABSTRACT A novel technology coupling extraction and foam fractionation was developed for separating the total saponins from Achyranthes bidentata. In the developed technology, the powder of A. bidentata was loaded in a nylon filter cloth pocket with bore diameter of 180 µm. The pocket was fixed in the bulk liquid phase for continuously releasing saponins. Under the optimal conditions, the concentration and the extraction rate of the total saponins in the foamate by the developed technology were 73.5% and 416.2% higher than those by the traditional technology, respectively. The foamates obtained by the traditional technology and the developed technology were analyzed by ultraperformance liquid chromatography–mass spectrometry to determine their ingredients, and the results appeared that the developed technology exhibited a better performance for separating saponins than the traditional technology. The study is expected to develop a novel technology for cost effectively separating plant-derived materials with surface activity.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":"84 1","pages":"666 - 672"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A novel technology coupling extraction and foam fractionation for separating the total saponins from Achyranthes bidentata\",\"authors\":\"Linlin Ding, Yanji Wang, Zhaoliang Wu, Wei Liu, Rui Li, Yanyan Wang\",\"doi\":\"10.1080/10826068.2015.1135448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A novel technology coupling extraction and foam fractionation was developed for separating the total saponins from Achyranthes bidentata. In the developed technology, the powder of A. bidentata was loaded in a nylon filter cloth pocket with bore diameter of 180 µm. The pocket was fixed in the bulk liquid phase for continuously releasing saponins. Under the optimal conditions, the concentration and the extraction rate of the total saponins in the foamate by the developed technology were 73.5% and 416.2% higher than those by the traditional technology, respectively. The foamates obtained by the traditional technology and the developed technology were analyzed by ultraperformance liquid chromatography–mass spectrometry to determine their ingredients, and the results appeared that the developed technology exhibited a better performance for separating saponins than the traditional technology. The study is expected to develop a novel technology for cost effectively separating plant-derived materials with surface activity.\",\"PeriodicalId\":20393,\"journal\":{\"name\":\"Preparative Biochemistry and Biotechnology\",\"volume\":\"84 1\",\"pages\":\"666 - 672\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2015.1135448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10826068.2015.1135448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel technology coupling extraction and foam fractionation for separating the total saponins from Achyranthes bidentata
ABSTRACT A novel technology coupling extraction and foam fractionation was developed for separating the total saponins from Achyranthes bidentata. In the developed technology, the powder of A. bidentata was loaded in a nylon filter cloth pocket with bore diameter of 180 µm. The pocket was fixed in the bulk liquid phase for continuously releasing saponins. Under the optimal conditions, the concentration and the extraction rate of the total saponins in the foamate by the developed technology were 73.5% and 416.2% higher than those by the traditional technology, respectively. The foamates obtained by the traditional technology and the developed technology were analyzed by ultraperformance liquid chromatography–mass spectrometry to determine their ingredients, and the results appeared that the developed technology exhibited a better performance for separating saponins than the traditional technology. The study is expected to develop a novel technology for cost effectively separating plant-derived materials with surface activity.