{"title":"数据中心单相和两相浸入式冷却的热性能","authors":"Chun-Kai Liu, Tan-Yi Chang","doi":"10.1109/IMPACT56280.2022.9966684","DOIUrl":null,"url":null,"abstract":"Thermal management is a key bottleneck of technology development in data center systems. Immersion cooling eliminates the thermal interface material and packaging limitations of conventional cooling methods. Single-phase immersion liquid cooling is limited to lower heat transfer coefficients. However, two-phase immersion cooling has emerged as a potential solution to overcome thermal limitations by boiling the coolant directly from the electronic components, thereby increasing heat convection. In this paper, we study the thermal and flow characteristics of electronic components in single-phase and two-phase immersion cooling by numerical simulation. We simulated the multi-heat sources on PCB with different heating power. Dielectric fluid is used for direct liquid cooling of electronic components. The cooling performance of heat sources with single and two-phase immersion cooling are compared and studied.","PeriodicalId":13517,"journal":{"name":"Impact","volume":"35 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermal Performance of Single-Phase and Two-Phase Immersion Cooling in Data Center\",\"authors\":\"Chun-Kai Liu, Tan-Yi Chang\",\"doi\":\"10.1109/IMPACT56280.2022.9966684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal management is a key bottleneck of technology development in data center systems. Immersion cooling eliminates the thermal interface material and packaging limitations of conventional cooling methods. Single-phase immersion liquid cooling is limited to lower heat transfer coefficients. However, two-phase immersion cooling has emerged as a potential solution to overcome thermal limitations by boiling the coolant directly from the electronic components, thereby increasing heat convection. In this paper, we study the thermal and flow characteristics of electronic components in single-phase and two-phase immersion cooling by numerical simulation. We simulated the multi-heat sources on PCB with different heating power. Dielectric fluid is used for direct liquid cooling of electronic components. The cooling performance of heat sources with single and two-phase immersion cooling are compared and studied.\",\"PeriodicalId\":13517,\"journal\":{\"name\":\"Impact\",\"volume\":\"35 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMPACT56280.2022.9966684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Impact","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT56280.2022.9966684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal Performance of Single-Phase and Two-Phase Immersion Cooling in Data Center
Thermal management is a key bottleneck of technology development in data center systems. Immersion cooling eliminates the thermal interface material and packaging limitations of conventional cooling methods. Single-phase immersion liquid cooling is limited to lower heat transfer coefficients. However, two-phase immersion cooling has emerged as a potential solution to overcome thermal limitations by boiling the coolant directly from the electronic components, thereby increasing heat convection. In this paper, we study the thermal and flow characteristics of electronic components in single-phase and two-phase immersion cooling by numerical simulation. We simulated the multi-heat sources on PCB with different heating power. Dielectric fluid is used for direct liquid cooling of electronic components. The cooling performance of heat sources with single and two-phase immersion cooling are compared and studied.