Chahbi Aziz, A. Safaa, Faiz Adil, Hajjaji Abdelowahed
{"title":"利用等效机械阻抗对人耳进行二维建模","authors":"Chahbi Aziz, A. Safaa, Faiz Adil, Hajjaji Abdelowahed","doi":"10.1051/epjap/2020200226","DOIUrl":null,"url":null,"abstract":"Several mass–spring–damper models have been developed to study the response of the human body parts. In such models, the lumped elements represent the mass of different body parts, and stiffness and damping properties of various tissues. The aim of this research is to develop a 2D axisymmetric model to simulate the motion of the human tympanic membrane. In this contribution we develop our model using a Comsol Multiphysics software to construct a 2D axisymmetric objects, the acoustic structure interaction between the ear canal (field of propagation of the acoustic wave) and the structure of ear (skin, cartilage, bone, tympanic membrane) was solved using finite elements analysis (FEA). A number of studies have investigated the motion of the human tympanic membrane attached to the ossicular chain and the middle ear cavity. In our model, the tympanic annular is assumed to be fixed and the loading of what comes behind the tympanic membrane as the ossicular chain, while middle ear cavity and cochlea were replaced by the equivalent mechanical impedance of a spring mass damper system. The obtained results demonstrate that the maximum displacements of the umbo are obtained at the frequency range of 0.9–2.6 kHz, the sound pressure gain had the shape of peak with a maximum at 2–3 kHz frequency range. The umbo displacement depends on the damping coefficient d, and the sound pressure at the tympanic membrane was enhanced compared to that at the ear canal entrance.","PeriodicalId":12228,"journal":{"name":"European Physical Journal-applied Physics","volume":"23 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D modeling of the human ear using the equivalent mechanical impedance\",\"authors\":\"Chahbi Aziz, A. Safaa, Faiz Adil, Hajjaji Abdelowahed\",\"doi\":\"10.1051/epjap/2020200226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several mass–spring–damper models have been developed to study the response of the human body parts. In such models, the lumped elements represent the mass of different body parts, and stiffness and damping properties of various tissues. The aim of this research is to develop a 2D axisymmetric model to simulate the motion of the human tympanic membrane. In this contribution we develop our model using a Comsol Multiphysics software to construct a 2D axisymmetric objects, the acoustic structure interaction between the ear canal (field of propagation of the acoustic wave) and the structure of ear (skin, cartilage, bone, tympanic membrane) was solved using finite elements analysis (FEA). A number of studies have investigated the motion of the human tympanic membrane attached to the ossicular chain and the middle ear cavity. In our model, the tympanic annular is assumed to be fixed and the loading of what comes behind the tympanic membrane as the ossicular chain, while middle ear cavity and cochlea were replaced by the equivalent mechanical impedance of a spring mass damper system. The obtained results demonstrate that the maximum displacements of the umbo are obtained at the frequency range of 0.9–2.6 kHz, the sound pressure gain had the shape of peak with a maximum at 2–3 kHz frequency range. The umbo displacement depends on the damping coefficient d, and the sound pressure at the tympanic membrane was enhanced compared to that at the ear canal entrance.\",\"PeriodicalId\":12228,\"journal\":{\"name\":\"European Physical Journal-applied Physics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Physical Journal-applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/epjap/2020200226\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Physical Journal-applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/epjap/2020200226","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
2D modeling of the human ear using the equivalent mechanical impedance
Several mass–spring–damper models have been developed to study the response of the human body parts. In such models, the lumped elements represent the mass of different body parts, and stiffness and damping properties of various tissues. The aim of this research is to develop a 2D axisymmetric model to simulate the motion of the human tympanic membrane. In this contribution we develop our model using a Comsol Multiphysics software to construct a 2D axisymmetric objects, the acoustic structure interaction between the ear canal (field of propagation of the acoustic wave) and the structure of ear (skin, cartilage, bone, tympanic membrane) was solved using finite elements analysis (FEA). A number of studies have investigated the motion of the human tympanic membrane attached to the ossicular chain and the middle ear cavity. In our model, the tympanic annular is assumed to be fixed and the loading of what comes behind the tympanic membrane as the ossicular chain, while middle ear cavity and cochlea were replaced by the equivalent mechanical impedance of a spring mass damper system. The obtained results demonstrate that the maximum displacements of the umbo are obtained at the frequency range of 0.9–2.6 kHz, the sound pressure gain had the shape of peak with a maximum at 2–3 kHz frequency range. The umbo displacement depends on the damping coefficient d, and the sound pressure at the tympanic membrane was enhanced compared to that at the ear canal entrance.
期刊介绍:
EPJ AP an international journal devoted to the promotion of the recent progresses in all fields of applied physics.
The articles published in EPJ AP span the whole spectrum of applied physics research.