茎属植物与钒属植物的有益与有害

W. Elkhateeb, G. Daba
{"title":"茎属植物与钒属植物的有益与有害","authors":"W. Elkhateeb, G. Daba","doi":"10.37871/jbres1356","DOIUrl":null,"url":null,"abstract":"Background: Emerging of microbial resistance, spread of life-threatening diseases, and biological control of pathogens destroying economically important crops, are serious problems that encourage scientists to search for unusual sources for novel compounds with biological activities. Fungi are promising sources for such compounds due to their ability to produce variety of secondary metabolites that could be, if truly investigated, the solution for currently serious problems. Aim: The aim of this review is to highlight the diversity of compounds produced by endophytic Stemphylium and Ulocladium and represents their ability to produce biologically diverse metabolites. Materials and methods: This was a narrative review. A comprehensive literature search was done using PubMed, Google Scholar, Scopus, and EMBASE using the keywords, Stemphylium; Ulocladium; Secondary metabolites; biological activities. Results: Many studies reported that the endophytic Ulocladium especially, Ulocladium atrum Preuss, showed promising biocontrol activity against Botrytis cinerea on crops cultivated in the greenhouse and the field. The endophytic fungus Stemphylium especially, Stemphylium globuliferum was isolated from stem tissues of the Moroccan medicinal plant Mentha pulegium. Extracts of the fungus exhibited significant cytotoxicity when tested in vitro against L5178Y cells. Conclusion: Endophytic fungi are a noble and consistent source of unique natural mixtures with a high level of biodiversity and may also yield several compounds of pharmaceutical significance, which is currently attracting scientific surveys worldwide. Every study conducted on Stemphylium and Ulocladium resulted in discovery of new metabolites or pointing to a possible application, which made Stemphylium and Ulocladium species potential source of pharmaceuticals and attracted attention for further investigations of their biological control.","PeriodicalId":94067,"journal":{"name":"Journal of biomedical research & environmental sciences","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stemphylium and Ulocladium between Benefit and Harmful\",\"authors\":\"W. Elkhateeb, G. Daba\",\"doi\":\"10.37871/jbres1356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Emerging of microbial resistance, spread of life-threatening diseases, and biological control of pathogens destroying economically important crops, are serious problems that encourage scientists to search for unusual sources for novel compounds with biological activities. Fungi are promising sources for such compounds due to their ability to produce variety of secondary metabolites that could be, if truly investigated, the solution for currently serious problems. Aim: The aim of this review is to highlight the diversity of compounds produced by endophytic Stemphylium and Ulocladium and represents their ability to produce biologically diverse metabolites. Materials and methods: This was a narrative review. A comprehensive literature search was done using PubMed, Google Scholar, Scopus, and EMBASE using the keywords, Stemphylium; Ulocladium; Secondary metabolites; biological activities. Results: Many studies reported that the endophytic Ulocladium especially, Ulocladium atrum Preuss, showed promising biocontrol activity against Botrytis cinerea on crops cultivated in the greenhouse and the field. The endophytic fungus Stemphylium especially, Stemphylium globuliferum was isolated from stem tissues of the Moroccan medicinal plant Mentha pulegium. Extracts of the fungus exhibited significant cytotoxicity when tested in vitro against L5178Y cells. Conclusion: Endophytic fungi are a noble and consistent source of unique natural mixtures with a high level of biodiversity and may also yield several compounds of pharmaceutical significance, which is currently attracting scientific surveys worldwide. Every study conducted on Stemphylium and Ulocladium resulted in discovery of new metabolites or pointing to a possible application, which made Stemphylium and Ulocladium species potential source of pharmaceuticals and attracted attention for further investigations of their biological control.\",\"PeriodicalId\":94067,\"journal\":{\"name\":\"Journal of biomedical research & environmental sciences\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical research & environmental sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37871/jbres1356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical research & environmental sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37871/jbres1356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:微生物耐药性的出现,威胁生命的疾病的传播,以及对破坏经济上重要作物的病原体的生物控制,都是鼓励科学家寻找具有生物活性的新化合物的不寻常来源的严重问题。真菌是这些化合物的有希望的来源,因为它们能够产生各种次生代谢物,如果真正进行研究,这些代谢物可能是当前严重问题的解决方案。目的:本综述的目的是强调内生植物Stemphylium和Ulocladium产生的化合物的多样性,并代表它们产生生物多样性代谢物的能力。材料与方法:本研究为叙述性综述。使用PubMed、Google Scholar、Scopus和EMBASE进行全面的文献检索,关键词为Stemphylium;Ulocladium;次生代谢产物;生物的活动。结果:许多研究报道了植物内生真菌Ulocladium,特别是Ulocladium atrum Preuss对温室和田间栽培的作物具有良好的防灰葡萄孢活性。从摩洛哥药用植物薄荷(Mentha pulegium)的茎组织中分离到内生真菌Stemphylium,特别是globuliferum。真菌提取物对L5178Y细胞具有明显的体外细胞毒性。结论:内生真菌是一种独特的天然混合物,具有高度的生物多样性,并且可能产生几种具有药用意义的化合物,目前正在引起世界范围内的科学研究。每一次对Stemphylium和Ulocladium的研究都有新的代谢物的发现或潜在的应用,这使得Stemphylium和Ulocladium成为潜在的药物来源,并引起了人们对其生物防治的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stemphylium and Ulocladium between Benefit and Harmful
Background: Emerging of microbial resistance, spread of life-threatening diseases, and biological control of pathogens destroying economically important crops, are serious problems that encourage scientists to search for unusual sources for novel compounds with biological activities. Fungi are promising sources for such compounds due to their ability to produce variety of secondary metabolites that could be, if truly investigated, the solution for currently serious problems. Aim: The aim of this review is to highlight the diversity of compounds produced by endophytic Stemphylium and Ulocladium and represents their ability to produce biologically diverse metabolites. Materials and methods: This was a narrative review. A comprehensive literature search was done using PubMed, Google Scholar, Scopus, and EMBASE using the keywords, Stemphylium; Ulocladium; Secondary metabolites; biological activities. Results: Many studies reported that the endophytic Ulocladium especially, Ulocladium atrum Preuss, showed promising biocontrol activity against Botrytis cinerea on crops cultivated in the greenhouse and the field. The endophytic fungus Stemphylium especially, Stemphylium globuliferum was isolated from stem tissues of the Moroccan medicinal plant Mentha pulegium. Extracts of the fungus exhibited significant cytotoxicity when tested in vitro against L5178Y cells. Conclusion: Endophytic fungi are a noble and consistent source of unique natural mixtures with a high level of biodiversity and may also yield several compounds of pharmaceutical significance, which is currently attracting scientific surveys worldwide. Every study conducted on Stemphylium and Ulocladium resulted in discovery of new metabolites or pointing to a possible application, which made Stemphylium and Ulocladium species potential source of pharmaceuticals and attracted attention for further investigations of their biological control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breastfeeding among Hispanic and Black Women: Barriers and Support. Flood Prevention Raman Spectroscopic Detection of Silicone Leakage in Human Breast and Lymph Node Tissues Characterization and Selection by Optical Absorption and Emission Spectrophotometry of a Series of Red Dyes Capable of Destroying Far UV Rays by Absorption Improving Invasive Breast Cancer Care Using Machine Learning Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1