{"title":"界面粗糙度对电子束物理气相沉积热障涂层残余应力的影响","authors":"Bochun Zhang, Kuiying Chen, N. Baddour","doi":"10.3390/COATINGS11030341","DOIUrl":null,"url":null,"abstract":"Residual stresses play an essential role in determining the failure mechanisms and life of an electron beam-physical vapour deposition thermal barrier coating (EB-PVD TBC) system. In this paper, a new transitional roughness model was proposed and applied to describe the interfacial roughness profile during thermal cycles. Finite element models were implemented to calculate residual stresses at specific positions close to the interface of TBCs using temperature process-dependent model parameters. Combining stresses evaluated at valleys of the topcoat (TC) and excessive sharp tip roughness profiles, positions where the maximum out-of-plane residual stresses occur were identified and used to explain possible cracking routes of EB-PVD TBCs as interfacial roughness evolves during thermal cycling.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"11 1","pages":"341"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Effect of Interfacial Roughness on Residual Stresses in Electron Beam-Physical Vapor Deposition of Thermal Barrier Coatings\",\"authors\":\"Bochun Zhang, Kuiying Chen, N. Baddour\",\"doi\":\"10.3390/COATINGS11030341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Residual stresses play an essential role in determining the failure mechanisms and life of an electron beam-physical vapour deposition thermal barrier coating (EB-PVD TBC) system. In this paper, a new transitional roughness model was proposed and applied to describe the interfacial roughness profile during thermal cycles. Finite element models were implemented to calculate residual stresses at specific positions close to the interface of TBCs using temperature process-dependent model parameters. Combining stresses evaluated at valleys of the topcoat (TC) and excessive sharp tip roughness profiles, positions where the maximum out-of-plane residual stresses occur were identified and used to explain possible cracking routes of EB-PVD TBCs as interfacial roughness evolves during thermal cycling.\",\"PeriodicalId\":22482,\"journal\":{\"name\":\"THE Coatings\",\"volume\":\"11 1\",\"pages\":\"341\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE Coatings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/COATINGS11030341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11030341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Effect of Interfacial Roughness on Residual Stresses in Electron Beam-Physical Vapor Deposition of Thermal Barrier Coatings
Residual stresses play an essential role in determining the failure mechanisms and life of an electron beam-physical vapour deposition thermal barrier coating (EB-PVD TBC) system. In this paper, a new transitional roughness model was proposed and applied to describe the interfacial roughness profile during thermal cycles. Finite element models were implemented to calculate residual stresses at specific positions close to the interface of TBCs using temperature process-dependent model parameters. Combining stresses evaluated at valleys of the topcoat (TC) and excessive sharp tip roughness profiles, positions where the maximum out-of-plane residual stresses occur were identified and used to explain possible cracking routes of EB-PVD TBCs as interfacial roughness evolves during thermal cycling.