钴锌铁氧体的合成、微观结构及电磁特性

A. Goryachko, S. Ivanin, Vladimir Yurievich Buzko
{"title":"钴锌铁氧体的合成、微观结构及电磁特性","authors":"A. Goryachko, S. Ivanin, Vladimir Yurievich Buzko","doi":"10.17308/kcmf.2020.22/3115","DOIUrl":null,"url":null,"abstract":"In this study, cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) was obtained by the glycine-nitrate method followed by annealing in a high-temperature furnace at a temperature of 1300 °С. The qualitative composition and its microstructural characteristics were determined using energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and scanning electron microscopy.The analysis of the micrographs demonstrated that the cobalt-zinc ferrite micropowder obtained after thermal annealing has an average particle size of 1.7±1 μm. The analysis of XRD data showed that the annealed cobalt-zinc ferrite micropowder has a cubic crystal structure with a lattice parameter of a = 8.415 Å. Using the Scherrer and Williamson-Hall equations we calculated the average sizes of the coherent scattering regions, which were commensurate with the size of crystallites: according to the Scherrer equation D = 28.26 nm and according to the Williamson-Hall equation D = 33.59 nm and the microstress value e = 5.62×10–4 in the ferrite structure.Using a vector network analyser, the electromagnetic properties of a composite material based on synthesized cobalt-zinc ferrite were determined. The frequency dependences of the magnetic and dielectric permeability values from the measured S-parameters of the composite material (50% ferrite filler by weight and 50% paraffin) were determined using the Nicolson-Ross-Weir method and were in the range of 0.015–7 GHz. The analysis of the graphs of the dependence of the magnetic permeability on the frequency of electromagnetic radiation revealed a resonance frequency of fr ≈ 2.3 GHz. The discoveredmagnetic resonance in the UHF range allows the obtained material to be considered as being promising for use as an effective absorber of electromagnetic radiation in the range of 2–2.5 GHz. \n  \n  \n  \nReferences \n1. Thakur P., Chahar D., Taneja S., Bhalla N. andThakur A. A review on MnZn ferrites: Synthesis,characterization and applications. CeramicsInternational. 2020;46(10): 15740–15763. DOI: https://doi.org/10.1016/j.ceramint.2020.03.2872. Pullar R. C. Hexagonal ferrites: A review of thesynthesis, properties and applications of hexaferriteceramics. Progress in Materials Science. 2012;57(7):1191–1334. DOI: https://doi.org/10.1016/j.pmatsci.2012.04.0013. Kharisov B. I., Dias H. V. R., Kharissova O. V.Mini-review: Ferrite nanoparticles in the catalysis.Arabian Journal of Chemistry. 2019;12(7): 1234–1246.DOI: https://doi.org/10.1016/j.arabjc.2014.10.0494. Stergiou C. Microstructure and electromagneticproperties of Ni-Zn-Co ferrite up to 20 GHz. Advancesin Materials Science and Engineering. 2016;2016: 1–7.DOI: https://doi.org/10.1155/2016/19347835. Economos G. Magnetic ceramics: I, Generalmethods of magnetic ferrite preparation. Journal of theAmerican Ceramic Society. 1955;38(7): 241–244. DOI:https://doi.org/10.1111/j.1151-2916.1955.tb14938.x6. Yurkov G. Y., Shashkeev K. A., Kondrashov S. V.,Popkov O. V., Shcherbakova G. I., Zhigalov D. V.,Pankratov D. A., Ovchenkov E. A., Koksharov Y. A.Synthesis and magnetic properties of cobalt ferritenanoparticles in polycarbosilane ceramic matrix.Journal of Alloys and Compounds. 2016;686: 421–430.DOI: https://doi.org/10.1016/j.jallcom.2016.06.0257. Karakaş Z. K., Boncukçuoğlu R., Karakaş İ. H.The effects of fuel type in synthesis of NiFe2O4nanoparticles by microwave assisted combustionmethod. Journal of Physics: Conference Series. 2016;707: 012046. DOI: https://doi.org/10.1088/1742-6596/707/1/0120468. Shirsath S. E., Jadhav S. S., Mane M. L., Li S.Handbook of sol-gel science and technology. Springer,Cham.; 2016. p. 1–41. DOI: https://doi.org/10.1007/978-3-319-19454-7_125-19. Vyzulin S. A., Kalikintseva D. A., MiroshnichenkoE. L., Buz’ko V. Y., Goryachko A. I. Microwaveabsorption properties of nickel–zinc ferritessynthesized by different means. Bulletin of the RussianAcademy of Sciences: Physics. 2018;82(8): 943–945.DOI: https://doi.org/10.3103/s106287381808043910. Janasi S. R., Emura M., Landgraf F. J. G.,Rodrigues D. The effects of synthesis variables on themagnetic properties of coprecipitated barium ferritepowders. Journal of Magnetism and Magnetic Materials.2002;238(2-3): 168–172. DOI: https://doi.org/10.1016/s0304-8853(01)00857-511. Ahmed Y. M. Z. Synthesis of manganese ferritefrom non-standard raw materials using ceramictechnique. Ceramics International. 2010;36(3): 969–977. DOI: https://doi.org/10.1016/j.ceramint.2009.11.02012. Mahadule R. K., Arjunwadkar P. R., MahaboleM. P. Synthesis and characterization ofCaxSryBa1–x–yFe12–zLazO19 by standard ceramic method.International Journal of Metals. 2013;2013: 1–7. DOI:https://doi.org/10.1155/2013/19897013. Tarța V. F., Chicinaş I., Marinca T. F.,Neamţu B. V., Popa F., Prica C. V. Synthesis of thenanocrystalline/nnosized NiFe2O4 powder by ceramicmethod and mechanical milling. Solid State Phenomena.2012;188: 27–30. DOI: https://doi.org/10.4028/www.scientific.net/ssp.188.2714. Pradhan A. K., Saha S., Nath T. K. AC and DCelectrical conductivity, dielectric and magneticproperties of Co0.65Zn0.35Fe2−xMoxO4 (x = 0.0, 0.1 and 0.2)ferrites. Applied Physics A. 2017;123(11): 715. DOI:https://doi.org/10.1007/s00339-017-1329-z15. Low Z. H., Ismail I., Tan K. S. Sinteringprocessing of complex magnetic ceramic oxides: Acomparison between sintering of bottom-up approachsynthesis and mechanochemical process of top-downapproach synthesis. Sintering Technology - Method andApplication. Malin Liu (ed.). 2018: 25–43. DOI: https://doi.org/10.5772/intechopen.7865416. Costa A. C. F. M., Morelli M. R., KiminamiR. H. G. A. Combustion synthesis: Effect of urea onthe reaction and characteristics of Ni–Zn ferritepowders. Journal of Materials Synthesis and Processing.2001; 9(6): 347–352. DOI: https://doi.org/10.1023/A:101635662340117. Maleknejad Z., Gheisari K., Raouf A. H.Structure, microstructure, magnetic, electromagnetic,and dielectric properties of nanostructured Mn–Znferrite synthesized by microwave-induced urea–nitrate process. Journal of Superconductivity and NovelMagnetism. 2016;29(10): 2523–2534. DOI: https://doi.org/10.1007/s10948-016-3572-518. Jalaiah K., Chandra Mouli K., Vijaya Babu K.,Krishnaiah R.V. The structural, DC resistivity andmagnetic properties of Mg and Zr Co-substitutedNi0.5Zn0.5Fe2O4. Journal of Science: Advanced Materialsand Devices. 2018;4(2): 310–318 DOI: https://doi.org/10.1016/j.jsamd.2018.12.00419. Yue Z., Zhou J., Li L., Zhang H., Gui Z. Synthesisof nanocrystalline NiCuZn ferrite powders by sol–gelauto-combustion method. Journal of Magnetism andMagnetic Materials. 2000;208(1-2): 55–60. DOI:https://doi.org/10.1016/s0304-8853(99)00566-120. Chick L. A., Pederson L. R., Maupin G. D.,Bates J. L., Thomas L. E., Exarhos G. J. Glycine-nitratecombustion synthesis of oxide ceramic powders.Materials Letters. 1990;10(1-2): 6–12. DOI: https://doi.org/10.1016/0167-577x(90)90003-521. Salunkhe A. B., Khot V. M., Phadatare M. R.,Pawar S. H. Combustion synthesis of cobalt ferritenanoparticles—Influence of fuel to oxidizer ratio.Journal of Alloys and Compounds. 2012;514: 91–96.DOI: https://doi.org/10.1016/j.jallcom.2011.10.09422. Martinson K. D., Cherepkova I. A., Sokolov V. V.Formation of cobalt ferrite nanoparticles via glycine-nitrate combustion and their magnetic properties.Glass Physics and Chemistry. 2018;44(1): 21–25.DOI: https://doi.org/10.1134/s108765961801009123. Kuzmin V. A., Zagrai I. A. A comprehensivestudy of combustion products generated from pulverizedpeat combustion in the furnace of BKZ-210-140Fsteam boiler. Journal of Physics: Conference Series.2017;891: 012226. DOI: https://doi.org/10.1088/1742-6596/891/1/01222624. Maleki A., Hosseini N., Taherizadeh A. Synthesisand characterization of cobalt ferrite nanoparticlesprepared by the glycine-nitrate process. Ceramics International.2018;44(7): 8576–8581. DOI: https://doi.org/10.1016/j.ceramint.2018.02.06325. Waje S. B., Hashim M., Wan Yusoff W. D., AbbasZ. Sintering temperature dependence of roomtemperature magnetic and dielectric properties ofCo0.5Zn0.5Fe2O4 prepared using mechanically alloyednanoparticles. Journal of Magnetism and MagneticMaterials. 2010;322(6): 686–691. DOI: https://doi.org/10.1016/j.jmmm.2009.10.04126. Nicolson A. M., Ross G. F. Measurement of theintrinsic properties of materials by time-domain techniques.IEEE Transactions on Instrumentation andMeasurement. 1970;19(4): 377–382. DOI: https://doi.org/10.1109/tim.1970.431393227. Rothwell E. J., Frasch J. L., Ellison S. M., ChahalP., Ouedraogo R.O. Analysis of the Nicolson-Ross-Weir method for characterizing the electromagneticproperties of engineered materials. ProgressIn Electromagnetics Research. 2016;157: 31–47. DOI:https://doi.org/10.2528/pier1607170628. Vicente A. N., Dip G. M., Junqueira C. The stepby step development of NRW method. ProceedingsArticle in: 2011 SBMO/IEEE MTT-S International Microwaveand Optoelectronics Conference (IMOC 2011).29 Oct. –1 Nov. 2011. 738–742. DOI: https://doi.org/10.1109/imoc.2011.616931829. Ivanin S. N., Buz’ko V. Yu., Goryachko A. I.,Panyushkin V. T. Electromagnetic characteristics ofheteroligand complexes of gadolinium stearate. RussianJournal of Physical Chemistry A. 2020;94(8):1623–1627. DOI: https://doi.org/10.1134/S003602442008013030. Liu Y.-W., Zhang J., Gu L.-S., Wang L.-X.,Zhang Q.-T. Preparation and electromagnetic propertiesof nanosized Co0.5Zn0.5Fe2O4 ferrite. Rare Metals. 2016.DOI: https://doi.org/10.1007/s12598-015-0670-7","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis, Microstructural and Electromagnetic Characteristics of Cobalt-Zinc Ferrite\",\"authors\":\"A. Goryachko, S. Ivanin, Vladimir Yurievich Buzko\",\"doi\":\"10.17308/kcmf.2020.22/3115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) was obtained by the glycine-nitrate method followed by annealing in a high-temperature furnace at a temperature of 1300 °С. The qualitative composition and its microstructural characteristics were determined using energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and scanning electron microscopy.The analysis of the micrographs demonstrated that the cobalt-zinc ferrite micropowder obtained after thermal annealing has an average particle size of 1.7±1 μm. The analysis of XRD data showed that the annealed cobalt-zinc ferrite micropowder has a cubic crystal structure with a lattice parameter of a = 8.415 Å. Using the Scherrer and Williamson-Hall equations we calculated the average sizes of the coherent scattering regions, which were commensurate with the size of crystallites: according to the Scherrer equation D = 28.26 nm and according to the Williamson-Hall equation D = 33.59 nm and the microstress value e = 5.62×10–4 in the ferrite structure.Using a vector network analyser, the electromagnetic properties of a composite material based on synthesized cobalt-zinc ferrite were determined. The frequency dependences of the magnetic and dielectric permeability values from the measured S-parameters of the composite material (50% ferrite filler by weight and 50% paraffin) were determined using the Nicolson-Ross-Weir method and were in the range of 0.015–7 GHz. The analysis of the graphs of the dependence of the magnetic permeability on the frequency of electromagnetic radiation revealed a resonance frequency of fr ≈ 2.3 GHz. The discoveredmagnetic resonance in the UHF range allows the obtained material to be considered as being promising for use as an effective absorber of electromagnetic radiation in the range of 2–2.5 GHz. \\n  \\n  \\n  \\nReferences \\n1. Thakur P., Chahar D., Taneja S., Bhalla N. andThakur A. A review on MnZn ferrites: Synthesis,characterization and applications. CeramicsInternational. 2020;46(10): 15740–15763. DOI: https://doi.org/10.1016/j.ceramint.2020.03.2872. Pullar R. C. Hexagonal ferrites: A review of thesynthesis, properties and applications of hexaferriteceramics. Progress in Materials Science. 2012;57(7):1191–1334. DOI: https://doi.org/10.1016/j.pmatsci.2012.04.0013. Kharisov B. I., Dias H. V. R., Kharissova O. V.Mini-review: Ferrite nanoparticles in the catalysis.Arabian Journal of Chemistry. 2019;12(7): 1234–1246.DOI: https://doi.org/10.1016/j.arabjc.2014.10.0494. Stergiou C. Microstructure and electromagneticproperties of Ni-Zn-Co ferrite up to 20 GHz. Advancesin Materials Science and Engineering. 2016;2016: 1–7.DOI: https://doi.org/10.1155/2016/19347835. Economos G. Magnetic ceramics: I, Generalmethods of magnetic ferrite preparation. Journal of theAmerican Ceramic Society. 1955;38(7): 241–244. DOI:https://doi.org/10.1111/j.1151-2916.1955.tb14938.x6. Yurkov G. Y., Shashkeev K. A., Kondrashov S. V.,Popkov O. V., Shcherbakova G. I., Zhigalov D. V.,Pankratov D. A., Ovchenkov E. A., Koksharov Y. A.Synthesis and magnetic properties of cobalt ferritenanoparticles in polycarbosilane ceramic matrix.Journal of Alloys and Compounds. 2016;686: 421–430.DOI: https://doi.org/10.1016/j.jallcom.2016.06.0257. Karakaş Z. K., Boncukçuoğlu R., Karakaş İ. H.The effects of fuel type in synthesis of NiFe2O4nanoparticles by microwave assisted combustionmethod. Journal of Physics: Conference Series. 2016;707: 012046. DOI: https://doi.org/10.1088/1742-6596/707/1/0120468. Shirsath S. E., Jadhav S. S., Mane M. L., Li S.Handbook of sol-gel science and technology. Springer,Cham.; 2016. p. 1–41. DOI: https://doi.org/10.1007/978-3-319-19454-7_125-19. Vyzulin S. A., Kalikintseva D. A., MiroshnichenkoE. L., Buz’ko V. Y., Goryachko A. I. Microwaveabsorption properties of nickel–zinc ferritessynthesized by different means. Bulletin of the RussianAcademy of Sciences: Physics. 2018;82(8): 943–945.DOI: https://doi.org/10.3103/s106287381808043910. Janasi S. R., Emura M., Landgraf F. J. G.,Rodrigues D. The effects of synthesis variables on themagnetic properties of coprecipitated barium ferritepowders. Journal of Magnetism and Magnetic Materials.2002;238(2-3): 168–172. DOI: https://doi.org/10.1016/s0304-8853(01)00857-511. Ahmed Y. M. Z. Synthesis of manganese ferritefrom non-standard raw materials using ceramictechnique. Ceramics International. 2010;36(3): 969–977. DOI: https://doi.org/10.1016/j.ceramint.2009.11.02012. Mahadule R. K., Arjunwadkar P. R., MahaboleM. P. Synthesis and characterization ofCaxSryBa1–x–yFe12–zLazO19 by standard ceramic method.International Journal of Metals. 2013;2013: 1–7. DOI:https://doi.org/10.1155/2013/19897013. Tarța V. F., Chicinaş I., Marinca T. F.,Neamţu B. V., Popa F., Prica C. V. Synthesis of thenanocrystalline/nnosized NiFe2O4 powder by ceramicmethod and mechanical milling. Solid State Phenomena.2012;188: 27–30. DOI: https://doi.org/10.4028/www.scientific.net/ssp.188.2714. Pradhan A. K., Saha S., Nath T. K. AC and DCelectrical conductivity, dielectric and magneticproperties of Co0.65Zn0.35Fe2−xMoxO4 (x = 0.0, 0.1 and 0.2)ferrites. Applied Physics A. 2017;123(11): 715. DOI:https://doi.org/10.1007/s00339-017-1329-z15. Low Z. H., Ismail I., Tan K. S. Sinteringprocessing of complex magnetic ceramic oxides: Acomparison between sintering of bottom-up approachsynthesis and mechanochemical process of top-downapproach synthesis. Sintering Technology - Method andApplication. Malin Liu (ed.). 2018: 25–43. DOI: https://doi.org/10.5772/intechopen.7865416. Costa A. C. F. M., Morelli M. R., KiminamiR. H. G. A. Combustion synthesis: Effect of urea onthe reaction and characteristics of Ni–Zn ferritepowders. Journal of Materials Synthesis and Processing.2001; 9(6): 347–352. DOI: https://doi.org/10.1023/A:101635662340117. Maleknejad Z., Gheisari K., Raouf A. H.Structure, microstructure, magnetic, electromagnetic,and dielectric properties of nanostructured Mn–Znferrite synthesized by microwave-induced urea–nitrate process. Journal of Superconductivity and NovelMagnetism. 2016;29(10): 2523–2534. DOI: https://doi.org/10.1007/s10948-016-3572-518. Jalaiah K., Chandra Mouli K., Vijaya Babu K.,Krishnaiah R.V. The structural, DC resistivity andmagnetic properties of Mg and Zr Co-substitutedNi0.5Zn0.5Fe2O4. Journal of Science: Advanced Materialsand Devices. 2018;4(2): 310–318 DOI: https://doi.org/10.1016/j.jsamd.2018.12.00419. Yue Z., Zhou J., Li L., Zhang H., Gui Z. Synthesisof nanocrystalline NiCuZn ferrite powders by sol–gelauto-combustion method. Journal of Magnetism andMagnetic Materials. 2000;208(1-2): 55–60. DOI:https://doi.org/10.1016/s0304-8853(99)00566-120. Chick L. A., Pederson L. R., Maupin G. D.,Bates J. L., Thomas L. E., Exarhos G. J. Glycine-nitratecombustion synthesis of oxide ceramic powders.Materials Letters. 1990;10(1-2): 6–12. DOI: https://doi.org/10.1016/0167-577x(90)90003-521. Salunkhe A. B., Khot V. M., Phadatare M. R.,Pawar S. H. Combustion synthesis of cobalt ferritenanoparticles—Influence of fuel to oxidizer ratio.Journal of Alloys and Compounds. 2012;514: 91–96.DOI: https://doi.org/10.1016/j.jallcom.2011.10.09422. Martinson K. D., Cherepkova I. A., Sokolov V. V.Formation of cobalt ferrite nanoparticles via glycine-nitrate combustion and their magnetic properties.Glass Physics and Chemistry. 2018;44(1): 21–25.DOI: https://doi.org/10.1134/s108765961801009123. Kuzmin V. A., Zagrai I. A. A comprehensivestudy of combustion products generated from pulverizedpeat combustion in the furnace of BKZ-210-140Fsteam boiler. Journal of Physics: Conference Series.2017;891: 012226. DOI: https://doi.org/10.1088/1742-6596/891/1/01222624. Maleki A., Hosseini N., Taherizadeh A. Synthesisand characterization of cobalt ferrite nanoparticlesprepared by the glycine-nitrate process. Ceramics International.2018;44(7): 8576–8581. DOI: https://doi.org/10.1016/j.ceramint.2018.02.06325. Waje S. B., Hashim M., Wan Yusoff W. D., AbbasZ. Sintering temperature dependence of roomtemperature magnetic and dielectric properties ofCo0.5Zn0.5Fe2O4 prepared using mechanically alloyednanoparticles. Journal of Magnetism and MagneticMaterials. 2010;322(6): 686–691. DOI: https://doi.org/10.1016/j.jmmm.2009.10.04126. Nicolson A. M., Ross G. F. Measurement of theintrinsic properties of materials by time-domain techniques.IEEE Transactions on Instrumentation andMeasurement. 1970;19(4): 377–382. DOI: https://doi.org/10.1109/tim.1970.431393227. Rothwell E. J., Frasch J. L., Ellison S. M., ChahalP., Ouedraogo R.O. Analysis of the Nicolson-Ross-Weir method for characterizing the electromagneticproperties of engineered materials. ProgressIn Electromagnetics Research. 2016;157: 31–47. DOI:https://doi.org/10.2528/pier1607170628. Vicente A. N., Dip G. M., Junqueira C. The stepby step development of NRW method. ProceedingsArticle in: 2011 SBMO/IEEE MTT-S International Microwaveand Optoelectronics Conference (IMOC 2011).29 Oct. –1 Nov. 2011. 738–742. DOI: https://doi.org/10.1109/imoc.2011.616931829. Ivanin S. N., Buz’ko V. Yu., Goryachko A. I.,Panyushkin V. T. Electromagnetic characteristics ofheteroligand complexes of gadolinium stearate. RussianJournal of Physical Chemistry A. 2020;94(8):1623–1627. DOI: https://doi.org/10.1134/S003602442008013030. Liu Y.-W., Zhang J., Gu L.-S., Wang L.-X.,Zhang Q.-T. Preparation and electromagnetic propertiesof nanosized Co0.5Zn0.5Fe2O4 ferrite. Rare Metals. 2016.DOI: https://doi.org/10.1007/s12598-015-0670-7\",\"PeriodicalId\":17879,\"journal\":{\"name\":\"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17308/kcmf.2020.22/3115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2020.22/3115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究采用甘氨酸-硝酸盐法,在1300°С高温炉中退火,制得钴锌铁氧体(Co0.5Zn0.5Fe2O4)。采用能量色散x射线能谱、x射线衍射分析和扫描电镜对其定性组成和微观结构特征进行了测定。显微形貌分析表明,热退火后得到的钴锌铁氧体微粉的平均粒径为1.7±1 μm。XRD数据分析表明,退火后的钴锌铁氧体微粉具有立方晶体结构,晶格参数为a = 8.415 Å。根据Scherrer方程和Williamson-Hall方程,我们计算出与晶体尺寸相适应的相干散射区域的平均尺寸:根据Scherrer方程D = 28.26 nm,根据Williamson-Hall方程D = 33.59 nm,铁氧体结构中的微应力值e = 5.62×10-4。利用矢量网络分析仪测定了合成钴锌铁氧体复合材料的电磁性能。采用Nicolson-Ross-Weir方法测定了复合材料(重量为50%的铁氧体填料和50%的石蜡)的s参数的磁导率和介电导电性值的频率依赖性,范围为0.015-7 GHz。磁导率随电磁辐射频率的曲线分析表明,其共振频率为fr≈2.3 GHz。在UHF范围内发现的磁共振使所获得的材料被认为有希望用作2-2.5 GHz范围内电磁辐射的有效吸收剂。引用1。李建军,李建军,李建军,等。锰锌铁氧体的合成、表征及应用研究进展。CeramicsInternational。2020; 46(10): 15740 - 15763。DOI: https://doi.org/10.1016/j.ceramint.2020.03.2872。六方铁氧体:六方铁氧体陶瓷的合成、性能及应用综述。材料科学进展,2012;57(7):1191-1334。DOI: https://doi.org/10.1016/j.pmatsci.2012.04.0013。李建军,李建军,李建军,等。纳米铁氧体纳米颗粒催化性能的研究进展。化学学报,2019;12(7):1234-1246。DOI: https://doi.org/10.1016/j.arabjc.2014.10.0494。C. Ni-Zn-Co铁氧体在20ghz波段的微观结构和电磁性能。材料科学与工程进展,2016;2016:1-7。DOI: https://doi.org/10.1155/2016/19347835。磁性陶瓷:1、磁性铁氧体制备的一般方法。陶瓷学报,1995;38(7):241-244。DOI: https://doi.org/10.1111/j.1151-2916.1955.tb14938.x6。Yurkov G. Y, Shashkeev K. A, Kondrashov S. V,Popkov O. V, Shcherbakova G. I, Zhigalov D. V,Pankratov D. A, Ovchenkov E. A, Koksharov Y. A.聚碳硅烷陶瓷基体中铁酸钴纳米粒子的合成及其磁性能。合金与化合物学报,2016;6(6):421-430。DOI: https://doi.org/10.1016/j.jallcom.2016.06.0257。karakazi Z. K., Boncukçuoğlu R., karakazi İ。h .燃料类型对微波辅助燃烧法制备纳米nife2o4的影响。物理学报,2016;37(7):012046。DOI: https://doi.org/10.1088/1742-6596/707/1/0120468。薛绍恩,贾德生,马明理,李生。溶胶-凝胶科学与技术手册。施普林格,可汗。2016. 1-41页。DOI: https://doi.org/10.1007/978 - 3 - 319 - 19454 - 7 - _125 - 19所示。Vyzulin s.a, Kalikintseva d.a, MiroshnichenkoE。李建军,李建军,李建军,等。不同方法合成镍锌铁氧体的微波吸收特性。俄罗斯科学院院刊:物理学报,2018;82(8):943-945。DOI: https://doi.org/10.3103/s106287381808043910。杨建军,刘建军,李建军,等。复合材料对钡铁氧体粉末磁性能的影响。磁性材料学报,2002;38(2):168-172。DOI: https://doi.org/10.1016/s0304 - 8853(01) 00857 - 511。Ahmed Y. M. Z.用陶瓷技术从非标准原料合成铁素体锰。陶瓷国际,2010;36(3):969-977。DOI: https://doi.org/10.1016/j.ceramint.2009.11.02012。Mahadule r.k., Arjunwadkar p.r, MahaboleM。P.标准陶瓷法合成caxsryba1 - x - yfe12 - zlazo19及表征。金属学报,2013;2013:1-7。DOI: https://doi.org/10.1155/2013/19897013。Tarța V. F, chicinaki, Marinca T. F,Neamţu b.v, Popa F, Prica C. V.机械研磨法制备纳米/纳米NiFe2O4粉体。计算机工程学报,2012;33(2):391 - 391。DOI: https://doi.org/10.4028/www.scientific.net/ssp.188.2714。普拉丹A. K,萨哈S.,纳特T. K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis, Microstructural and Electromagnetic Characteristics of Cobalt-Zinc Ferrite
In this study, cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) was obtained by the glycine-nitrate method followed by annealing in a high-temperature furnace at a temperature of 1300 °С. The qualitative composition and its microstructural characteristics were determined using energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and scanning electron microscopy.The analysis of the micrographs demonstrated that the cobalt-zinc ferrite micropowder obtained after thermal annealing has an average particle size of 1.7±1 μm. The analysis of XRD data showed that the annealed cobalt-zinc ferrite micropowder has a cubic crystal structure with a lattice parameter of a = 8.415 Å. Using the Scherrer and Williamson-Hall equations we calculated the average sizes of the coherent scattering regions, which were commensurate with the size of crystallites: according to the Scherrer equation D = 28.26 nm and according to the Williamson-Hall equation D = 33.59 nm and the microstress value e = 5.62×10–4 in the ferrite structure.Using a vector network analyser, the electromagnetic properties of a composite material based on synthesized cobalt-zinc ferrite were determined. The frequency dependences of the magnetic and dielectric permeability values from the measured S-parameters of the composite material (50% ferrite filler by weight and 50% paraffin) were determined using the Nicolson-Ross-Weir method and were in the range of 0.015–7 GHz. The analysis of the graphs of the dependence of the magnetic permeability on the frequency of electromagnetic radiation revealed a resonance frequency of fr ≈ 2.3 GHz. The discoveredmagnetic resonance in the UHF range allows the obtained material to be considered as being promising for use as an effective absorber of electromagnetic radiation in the range of 2–2.5 GHz.       References 1. Thakur P., Chahar D., Taneja S., Bhalla N. andThakur A. A review on MnZn ferrites: Synthesis,characterization and applications. CeramicsInternational. 2020;46(10): 15740–15763. DOI: https://doi.org/10.1016/j.ceramint.2020.03.2872. Pullar R. C. Hexagonal ferrites: A review of thesynthesis, properties and applications of hexaferriteceramics. Progress in Materials Science. 2012;57(7):1191–1334. DOI: https://doi.org/10.1016/j.pmatsci.2012.04.0013. Kharisov B. I., Dias H. V. R., Kharissova O. V.Mini-review: Ferrite nanoparticles in the catalysis.Arabian Journal of Chemistry. 2019;12(7): 1234–1246.DOI: https://doi.org/10.1016/j.arabjc.2014.10.0494. Stergiou C. Microstructure and electromagneticproperties of Ni-Zn-Co ferrite up to 20 GHz. Advancesin Materials Science and Engineering. 2016;2016: 1–7.DOI: https://doi.org/10.1155/2016/19347835. Economos G. Magnetic ceramics: I, Generalmethods of magnetic ferrite preparation. Journal of theAmerican Ceramic Society. 1955;38(7): 241–244. DOI:https://doi.org/10.1111/j.1151-2916.1955.tb14938.x6. Yurkov G. Y., Shashkeev K. A., Kondrashov S. V.,Popkov O. V., Shcherbakova G. I., Zhigalov D. V.,Pankratov D. A., Ovchenkov E. A., Koksharov Y. A.Synthesis and magnetic properties of cobalt ferritenanoparticles in polycarbosilane ceramic matrix.Journal of Alloys and Compounds. 2016;686: 421–430.DOI: https://doi.org/10.1016/j.jallcom.2016.06.0257. Karakaş Z. K., Boncukçuoğlu R., Karakaş İ. H.The effects of fuel type in synthesis of NiFe2O4nanoparticles by microwave assisted combustionmethod. Journal of Physics: Conference Series. 2016;707: 012046. DOI: https://doi.org/10.1088/1742-6596/707/1/0120468. Shirsath S. E., Jadhav S. S., Mane M. L., Li S.Handbook of sol-gel science and technology. Springer,Cham.; 2016. p. 1–41. DOI: https://doi.org/10.1007/978-3-319-19454-7_125-19. Vyzulin S. A., Kalikintseva D. A., MiroshnichenkoE. L., Buz’ko V. Y., Goryachko A. I. Microwaveabsorption properties of nickel–zinc ferritessynthesized by different means. Bulletin of the RussianAcademy of Sciences: Physics. 2018;82(8): 943–945.DOI: https://doi.org/10.3103/s106287381808043910. Janasi S. R., Emura M., Landgraf F. J. G.,Rodrigues D. The effects of synthesis variables on themagnetic properties of coprecipitated barium ferritepowders. Journal of Magnetism and Magnetic Materials.2002;238(2-3): 168–172. DOI: https://doi.org/10.1016/s0304-8853(01)00857-511. Ahmed Y. M. Z. Synthesis of manganese ferritefrom non-standard raw materials using ceramictechnique. Ceramics International. 2010;36(3): 969–977. DOI: https://doi.org/10.1016/j.ceramint.2009.11.02012. Mahadule R. K., Arjunwadkar P. R., MahaboleM. P. Synthesis and characterization ofCaxSryBa1–x–yFe12–zLazO19 by standard ceramic method.International Journal of Metals. 2013;2013: 1–7. DOI:https://doi.org/10.1155/2013/19897013. Tarța V. F., Chicinaş I., Marinca T. F.,Neamţu B. V., Popa F., Prica C. V. Synthesis of thenanocrystalline/nnosized NiFe2O4 powder by ceramicmethod and mechanical milling. Solid State Phenomena.2012;188: 27–30. DOI: https://doi.org/10.4028/www.scientific.net/ssp.188.2714. Pradhan A. K., Saha S., Nath T. K. AC and DCelectrical conductivity, dielectric and magneticproperties of Co0.65Zn0.35Fe2−xMoxO4 (x = 0.0, 0.1 and 0.2)ferrites. Applied Physics A. 2017;123(11): 715. DOI:https://doi.org/10.1007/s00339-017-1329-z15. Low Z. H., Ismail I., Tan K. S. Sinteringprocessing of complex magnetic ceramic oxides: Acomparison between sintering of bottom-up approachsynthesis and mechanochemical process of top-downapproach synthesis. Sintering Technology - Method andApplication. Malin Liu (ed.). 2018: 25–43. DOI: https://doi.org/10.5772/intechopen.7865416. Costa A. C. F. M., Morelli M. R., KiminamiR. H. G. A. Combustion synthesis: Effect of urea onthe reaction and characteristics of Ni–Zn ferritepowders. Journal of Materials Synthesis and Processing.2001; 9(6): 347–352. DOI: https://doi.org/10.1023/A:101635662340117. Maleknejad Z., Gheisari K., Raouf A. H.Structure, microstructure, magnetic, electromagnetic,and dielectric properties of nanostructured Mn–Znferrite synthesized by microwave-induced urea–nitrate process. Journal of Superconductivity and NovelMagnetism. 2016;29(10): 2523–2534. DOI: https://doi.org/10.1007/s10948-016-3572-518. Jalaiah K., Chandra Mouli K., Vijaya Babu K.,Krishnaiah R.V. The structural, DC resistivity andmagnetic properties of Mg and Zr Co-substitutedNi0.5Zn0.5Fe2O4. Journal of Science: Advanced Materialsand Devices. 2018;4(2): 310–318 DOI: https://doi.org/10.1016/j.jsamd.2018.12.00419. Yue Z., Zhou J., Li L., Zhang H., Gui Z. Synthesisof nanocrystalline NiCuZn ferrite powders by sol–gelauto-combustion method. Journal of Magnetism andMagnetic Materials. 2000;208(1-2): 55–60. DOI:https://doi.org/10.1016/s0304-8853(99)00566-120. Chick L. A., Pederson L. R., Maupin G. D.,Bates J. L., Thomas L. E., Exarhos G. J. Glycine-nitratecombustion synthesis of oxide ceramic powders.Materials Letters. 1990;10(1-2): 6–12. DOI: https://doi.org/10.1016/0167-577x(90)90003-521. Salunkhe A. B., Khot V. M., Phadatare M. R.,Pawar S. H. Combustion synthesis of cobalt ferritenanoparticles—Influence of fuel to oxidizer ratio.Journal of Alloys and Compounds. 2012;514: 91–96.DOI: https://doi.org/10.1016/j.jallcom.2011.10.09422. Martinson K. D., Cherepkova I. A., Sokolov V. V.Formation of cobalt ferrite nanoparticles via glycine-nitrate combustion and their magnetic properties.Glass Physics and Chemistry. 2018;44(1): 21–25.DOI: https://doi.org/10.1134/s108765961801009123. Kuzmin V. A., Zagrai I. A. A comprehensivestudy of combustion products generated from pulverizedpeat combustion in the furnace of BKZ-210-140Fsteam boiler. Journal of Physics: Conference Series.2017;891: 012226. DOI: https://doi.org/10.1088/1742-6596/891/1/01222624. Maleki A., Hosseini N., Taherizadeh A. Synthesisand characterization of cobalt ferrite nanoparticlesprepared by the glycine-nitrate process. Ceramics International.2018;44(7): 8576–8581. DOI: https://doi.org/10.1016/j.ceramint.2018.02.06325. Waje S. B., Hashim M., Wan Yusoff W. D., AbbasZ. Sintering temperature dependence of roomtemperature magnetic and dielectric properties ofCo0.5Zn0.5Fe2O4 prepared using mechanically alloyednanoparticles. Journal of Magnetism and MagneticMaterials. 2010;322(6): 686–691. DOI: https://doi.org/10.1016/j.jmmm.2009.10.04126. Nicolson A. M., Ross G. F. Measurement of theintrinsic properties of materials by time-domain techniques.IEEE Transactions on Instrumentation andMeasurement. 1970;19(4): 377–382. DOI: https://doi.org/10.1109/tim.1970.431393227. Rothwell E. J., Frasch J. L., Ellison S. M., ChahalP., Ouedraogo R.O. Analysis of the Nicolson-Ross-Weir method for characterizing the electromagneticproperties of engineered materials. ProgressIn Electromagnetics Research. 2016;157: 31–47. DOI:https://doi.org/10.2528/pier1607170628. Vicente A. N., Dip G. M., Junqueira C. The stepby step development of NRW method. ProceedingsArticle in: 2011 SBMO/IEEE MTT-S International Microwaveand Optoelectronics Conference (IMOC 2011).29 Oct. –1 Nov. 2011. 738–742. DOI: https://doi.org/10.1109/imoc.2011.616931829. Ivanin S. N., Buz’ko V. Yu., Goryachko A. I.,Panyushkin V. T. Electromagnetic characteristics ofheteroligand complexes of gadolinium stearate. RussianJournal of Physical Chemistry A. 2020;94(8):1623–1627. DOI: https://doi.org/10.1134/S003602442008013030. Liu Y.-W., Zhang J., Gu L.-S., Wang L.-X.,Zhang Q.-T. Preparation and electromagnetic propertiesof nanosized Co0.5Zn0.5Fe2O4 ferrite. Rare Metals. 2016.DOI: https://doi.org/10.1007/s12598-015-0670-7
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dps protein localization studies in nanostructured silicon matrix by scanning electron microscopy Phase formation in the Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system High-temperature spectrophotometry of indium chloride vapours as a method of study of the In – Se system Electrodialysis of a sodium sulphate solution with experimental bentonite-modified bipolar membranes Synthesis of chitosan and N-vinylimidazole graft-copolymers and the properties of their aqueous solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1