{"title":"面向云配置的安全压力测试","authors":"F. Minna, F. Massacci, Katja Tuma","doi":"10.1109/CLOUD55607.2022.00038","DOIUrl":null,"url":null,"abstract":"Securing cloud configurations is an elusive task, which is left up to system administrators who have to base their decisions on \"trial and error\" experimentations or by observing good practices (e.g., CIS Benchmarks). We propose a knowledge, AND/OR, graphs approach to model cloud deployment security objects and vulnerabilities. In this way, we can capture relationships between configurations, permissions (e.g., CAP_SYS_ADMIN), and security profiles (e.g., AppArmor and SecComp). Such an approach allows us to suggest alternative and safer configurations, support administrators in the study of what-if scenarios, and scale the analysis to large scale deployments. We present an initial validation and illustrate the approach with three real vulnerabilities from known sources.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"9 1","pages":"191-196"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards a Security Stress-Test for Cloud Configurations\",\"authors\":\"F. Minna, F. Massacci, Katja Tuma\",\"doi\":\"10.1109/CLOUD55607.2022.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Securing cloud configurations is an elusive task, which is left up to system administrators who have to base their decisions on \\\"trial and error\\\" experimentations or by observing good practices (e.g., CIS Benchmarks). We propose a knowledge, AND/OR, graphs approach to model cloud deployment security objects and vulnerabilities. In this way, we can capture relationships between configurations, permissions (e.g., CAP_SYS_ADMIN), and security profiles (e.g., AppArmor and SecComp). Such an approach allows us to suggest alternative and safer configurations, support administrators in the study of what-if scenarios, and scale the analysis to large scale deployments. We present an initial validation and illustrate the approach with three real vulnerabilities from known sources.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"9 1\",\"pages\":\"191-196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD55607.2022.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Towards a Security Stress-Test for Cloud Configurations
Securing cloud configurations is an elusive task, which is left up to system administrators who have to base their decisions on "trial and error" experimentations or by observing good practices (e.g., CIS Benchmarks). We propose a knowledge, AND/OR, graphs approach to model cloud deployment security objects and vulnerabilities. In this way, we can capture relationships between configurations, permissions (e.g., CAP_SYS_ADMIN), and security profiles (e.g., AppArmor and SecComp). Such an approach allows us to suggest alternative and safer configurations, support administrators in the study of what-if scenarios, and scale the analysis to large scale deployments. We present an initial validation and illustrate the approach with three real vulnerabilities from known sources.
期刊介绍:
Cessation.
IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)