{"title":"用方程来解决两个不同的问题","authors":"S. Bouroubi, Ali Debbache","doi":"10.12697/acutm.2021.25.10","DOIUrl":null,"url":null,"abstract":"A Thue equation is a Diophantine equation of the form f(x; y) = r, where f is an irreducible binary form of degree at least 3, and r is a given nonzero rational number. A set S of at least three positive integers is called a D13-set if the product of any of its three distinct elements is a perfect cube minus one. We prove that any D13-set is finite and, for any positive integer a, the two-tuple {a, 2a} is extendible to a D13-set 3-tuple, but not to a 4-tuple. Using the well-known Thue equation 2x3 - y3 = 1, we show that the only cubic-triangular number is 1.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"11 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thue's equation as a tool to solve two different problems\",\"authors\":\"S. Bouroubi, Ali Debbache\",\"doi\":\"10.12697/acutm.2021.25.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Thue equation is a Diophantine equation of the form f(x; y) = r, where f is an irreducible binary form of degree at least 3, and r is a given nonzero rational number. A set S of at least three positive integers is called a D13-set if the product of any of its three distinct elements is a perfect cube minus one. We prove that any D13-set is finite and, for any positive integer a, the two-tuple {a, 2a} is extendible to a D13-set 3-tuple, but not to a 4-tuple. Using the well-known Thue equation 2x3 - y3 = 1, we show that the only cubic-triangular number is 1.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2021.25.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2021.25.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Thue's equation as a tool to solve two different problems
A Thue equation is a Diophantine equation of the form f(x; y) = r, where f is an irreducible binary form of degree at least 3, and r is a given nonzero rational number. A set S of at least three positive integers is called a D13-set if the product of any of its three distinct elements is a perfect cube minus one. We prove that any D13-set is finite and, for any positive integer a, the two-tuple {a, 2a} is extendible to a D13-set 3-tuple, but not to a 4-tuple. Using the well-known Thue equation 2x3 - y3 = 1, we show that the only cubic-triangular number is 1.