J. Feng, Yichen Wei, Litian Tao, Chao Zhang, Jian Sun
{"title":"基于组合的显著目标检测","authors":"J. Feng, Yichen Wei, Litian Tao, Chao Zhang, Jian Sun","doi":"10.1109/ICCV.2011.6126348","DOIUrl":null,"url":null,"abstract":"Conventional saliency analysis methods measure the saliency of individual pixels. The resulting saliency map inevitably loses information in the original image and finding salient objects in it is difficult. We propose to detect salient objects by directly measuring the saliency of an image window in the original image and adopt the well established sliding window based object detection paradigm.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"8 1","pages":"1028-1035"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"166","resultStr":"{\"title\":\"Salient object detection by composition\",\"authors\":\"J. Feng, Yichen Wei, Litian Tao, Chao Zhang, Jian Sun\",\"doi\":\"10.1109/ICCV.2011.6126348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional saliency analysis methods measure the saliency of individual pixels. The resulting saliency map inevitably loses information in the original image and finding salient objects in it is difficult. We propose to detect salient objects by directly measuring the saliency of an image window in the original image and adopt the well established sliding window based object detection paradigm.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":\"8 1\",\"pages\":\"1028-1035\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"166\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conventional saliency analysis methods measure the saliency of individual pixels. The resulting saliency map inevitably loses information in the original image and finding salient objects in it is difficult. We propose to detect salient objects by directly measuring the saliency of an image window in the original image and adopt the well established sliding window based object detection paradigm.