基于高斯密度的深度神经网络单通道语音增强

Li Chai, Jun Du, Yannan Wang
{"title":"基于高斯密度的深度神经网络单通道语音增强","authors":"Li Chai, Jun Du, Yannan Wang","doi":"10.1109/MLSP.2017.8168116","DOIUrl":null,"url":null,"abstract":"Recently, the minimum mean squared error (MMSE) has been a benchmark of optimization criterion for deep neural network (DNN) based speech enhancement. In this study, a probabilistic learning framework to estimate the DNN parameters for single-channel speech enhancement is proposed. First, the statistical analysis shows that the prediction error vector at the DNN output well follows a unimodal density for each log-power spectral component. Accordingly, we present a maximum likelihood (ML) approach to DNN parameter learning by charactering the prediction error vector as a multivariate Gaussian density with a zero mean vector and an unknown covariance matrix. It is demonstrated that the proposed learning approach can achieve a better generalization capability than MMSE-based DNN learning for unseen noise types, which can significantly reduce the speech distortions in low SNR environments.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"24 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Gaussian density guided deep neural network for single-channel speech enhancement\",\"authors\":\"Li Chai, Jun Du, Yannan Wang\",\"doi\":\"10.1109/MLSP.2017.8168116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the minimum mean squared error (MMSE) has been a benchmark of optimization criterion for deep neural network (DNN) based speech enhancement. In this study, a probabilistic learning framework to estimate the DNN parameters for single-channel speech enhancement is proposed. First, the statistical analysis shows that the prediction error vector at the DNN output well follows a unimodal density for each log-power spectral component. Accordingly, we present a maximum likelihood (ML) approach to DNN parameter learning by charactering the prediction error vector as a multivariate Gaussian density with a zero mean vector and an unknown covariance matrix. It is demonstrated that the proposed learning approach can achieve a better generalization capability than MMSE-based DNN learning for unseen noise types, which can significantly reduce the speech distortions in low SNR environments.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"24 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

近年来,最小均方误差(MMSE)已成为基于深度神经网络(DNN)的语音增强优化准则的基准。在本研究中,提出了一种估计单通道语音增强的深度神经网络参数的概率学习框架。首先,统计分析表明,DNN输出处的预测误差向量很好地遵循每个对数功率谱分量的单峰密度。因此,我们通过将预测误差向量表征为具有零均值向量和未知协方差矩阵的多元高斯密度,提出了DNN参数学习的最大似然(ML)方法。实验结果表明,该学习方法比基于mmse的深度神经网络学习方法具有更好的泛化能力,可以显著降低低信噪比环境下的语音失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gaussian density guided deep neural network for single-channel speech enhancement
Recently, the minimum mean squared error (MMSE) has been a benchmark of optimization criterion for deep neural network (DNN) based speech enhancement. In this study, a probabilistic learning framework to estimate the DNN parameters for single-channel speech enhancement is proposed. First, the statistical analysis shows that the prediction error vector at the DNN output well follows a unimodal density for each log-power spectral component. Accordingly, we present a maximum likelihood (ML) approach to DNN parameter learning by charactering the prediction error vector as a multivariate Gaussian density with a zero mean vector and an unknown covariance matrix. It is demonstrated that the proposed learning approach can achieve a better generalization capability than MMSE-based DNN learning for unseen noise types, which can significantly reduce the speech distortions in low SNR environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1