{"title":"风险和绩效评估与序列相关数据的标准误差","authors":"A. Christidis, R. Martin","doi":"10.32614/rj-2021-106","DOIUrl":null,"url":null,"abstract":"The Risk and Performance Estimators Standard Errors package RPESE implements a new method for computing accurate standard errors of risk and performance estimators when returns are serially dependent. The new method makes use of the representation of a risk or performance estimator as a summation of a time series of influence-function (IF) transformed returns, and computes estimator standard errors using a sophisticated method of estimating the spectral density at frequency zero of the time series of IF-transformed returns. Two additional packages used by RPESE are introduced, namely RPEIF which computes and provides graphical displays of the IF of risk and performance estimators, and RPEGLMEN which implements a regularized Gamma generalized linear model polynomial fit to the periodogram of the time series of the IF-transformed returns. A Monte Carlo study shows that the new method provides more accurate estimates of standard errors for risk and performance estimators compared to well-known alternative methods in the presence of serial correlation.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"74 1","pages":"624"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RPESE: Risk and Performance Estimators Standard Errors with Serially Dependent Data\",\"authors\":\"A. Christidis, R. Martin\",\"doi\":\"10.32614/rj-2021-106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Risk and Performance Estimators Standard Errors package RPESE implements a new method for computing accurate standard errors of risk and performance estimators when returns are serially dependent. The new method makes use of the representation of a risk or performance estimator as a summation of a time series of influence-function (IF) transformed returns, and computes estimator standard errors using a sophisticated method of estimating the spectral density at frequency zero of the time series of IF-transformed returns. Two additional packages used by RPESE are introduced, namely RPEIF which computes and provides graphical displays of the IF of risk and performance estimators, and RPEGLMEN which implements a regularized Gamma generalized linear model polynomial fit to the periodogram of the time series of the IF-transformed returns. A Monte Carlo study shows that the new method provides more accurate estimates of standard errors for risk and performance estimators compared to well-known alternative methods in the presence of serial correlation.\",\"PeriodicalId\":20974,\"journal\":{\"name\":\"R J.\",\"volume\":\"74 1\",\"pages\":\"624\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2021-106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2021-106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RPESE: Risk and Performance Estimators Standard Errors with Serially Dependent Data
The Risk and Performance Estimators Standard Errors package RPESE implements a new method for computing accurate standard errors of risk and performance estimators when returns are serially dependent. The new method makes use of the representation of a risk or performance estimator as a summation of a time series of influence-function (IF) transformed returns, and computes estimator standard errors using a sophisticated method of estimating the spectral density at frequency zero of the time series of IF-transformed returns. Two additional packages used by RPESE are introduced, namely RPEIF which computes and provides graphical displays of the IF of risk and performance estimators, and RPEGLMEN which implements a regularized Gamma generalized linear model polynomial fit to the periodogram of the time series of the IF-transformed returns. A Monte Carlo study shows that the new method provides more accurate estimates of standard errors for risk and performance estimators compared to well-known alternative methods in the presence of serial correlation.