风险和绩效评估与序列相关数据的标准误差

R J. Pub Date : 2021-01-01 DOI:10.32614/rj-2021-106
A. Christidis, R. Martin
{"title":"风险和绩效评估与序列相关数据的标准误差","authors":"A. Christidis, R. Martin","doi":"10.32614/rj-2021-106","DOIUrl":null,"url":null,"abstract":"The Risk and Performance Estimators Standard Errors package RPESE implements a new method for computing accurate standard errors of risk and performance estimators when returns are serially dependent. The new method makes use of the representation of a risk or performance estimator as a summation of a time series of influence-function (IF) transformed returns, and computes estimator standard errors using a sophisticated method of estimating the spectral density at frequency zero of the time series of IF-transformed returns. Two additional packages used by RPESE are introduced, namely RPEIF which computes and provides graphical displays of the IF of risk and performance estimators, and RPEGLMEN which implements a regularized Gamma generalized linear model polynomial fit to the periodogram of the time series of the IF-transformed returns. A Monte Carlo study shows that the new method provides more accurate estimates of standard errors for risk and performance estimators compared to well-known alternative methods in the presence of serial correlation.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"74 1","pages":"624"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RPESE: Risk and Performance Estimators Standard Errors with Serially Dependent Data\",\"authors\":\"A. Christidis, R. Martin\",\"doi\":\"10.32614/rj-2021-106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Risk and Performance Estimators Standard Errors package RPESE implements a new method for computing accurate standard errors of risk and performance estimators when returns are serially dependent. The new method makes use of the representation of a risk or performance estimator as a summation of a time series of influence-function (IF) transformed returns, and computes estimator standard errors using a sophisticated method of estimating the spectral density at frequency zero of the time series of IF-transformed returns. Two additional packages used by RPESE are introduced, namely RPEIF which computes and provides graphical displays of the IF of risk and performance estimators, and RPEGLMEN which implements a regularized Gamma generalized linear model polynomial fit to the periodogram of the time series of the IF-transformed returns. A Monte Carlo study shows that the new method provides more accurate estimates of standard errors for risk and performance estimators compared to well-known alternative methods in the presence of serial correlation.\",\"PeriodicalId\":20974,\"journal\":{\"name\":\"R J.\",\"volume\":\"74 1\",\"pages\":\"624\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2021-106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2021-106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

风险和绩效估计器标准误差包rpse实现了一种新的方法,用于在收益序列相关时计算风险和绩效估计器的准确标准误差。新方法将风险或业绩估计量表示为影响函数(IF)转换收益的时间序列的总和,并使用一种估计IF转换收益时间序列频率为零的谱密度的复杂方法计算估计量标准误差。介绍了rpeese使用的两个附加软件包,即计算并提供风险和业绩估计器的IF的图形显示的RPEIF,以及实现正则化伽玛广义线性模型多项式拟合的周期图的RPEGLMEN。一项蒙特卡罗研究表明,在存在序列相关性的情况下,与已知的替代方法相比,新方法为风险和性能估计器提供了更准确的标准误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RPESE: Risk and Performance Estimators Standard Errors with Serially Dependent Data
The Risk and Performance Estimators Standard Errors package RPESE implements a new method for computing accurate standard errors of risk and performance estimators when returns are serially dependent. The new method makes use of the representation of a risk or performance estimator as a summation of a time series of influence-function (IF) transformed returns, and computes estimator standard errors using a sophisticated method of estimating the spectral density at frequency zero of the time series of IF-transformed returns. Two additional packages used by RPESE are introduced, namely RPEIF which computes and provides graphical displays of the IF of risk and performance estimators, and RPEGLMEN which implements a regularized Gamma generalized linear model polynomial fit to the periodogram of the time series of the IF-transformed returns. A Monte Carlo study shows that the new method provides more accurate estimates of standard errors for risk and performance estimators compared to well-known alternative methods in the presence of serial correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Mosaic Plots in the \pkg{ggplot2} Framework populR: a Package for Population Downscaling in R Making Provenance Work for You SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1