基于机器学习的近红外光谱橙子来源识别框架

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal on Semantic Web and Information Systems Pub Date : 2022-01-01 DOI:10.4018/ijswis.297039
Songjian Dan
{"title":"基于机器学习的近红外光谱橙子来源识别框架","authors":"Songjian Dan","doi":"10.4018/ijswis.297039","DOIUrl":null,"url":null,"abstract":"Research on the identification model of orange origin based on machine learning in Near infrared (NIR) spectroscopy. According to the characteristics of NIR spectral data, a complete general framework for origin identification is proposed. It includes steps such as data preprocessing, feature selection, model building and cross validation. Compare multiple preprocessing algorithms and multiple machine learning algorithms under the framework. Based on NIR spectroscopy to identify the origin of orange, a good identification result was obtained. Improve the accuracy of orange origin identification and obtained the best origin identification accuracy of 92.8%.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"26 1","pages":"1-16"},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"NIR Spectroscopy Oranges Origin Identification Framework Based on Machine Learning\",\"authors\":\"Songjian Dan\",\"doi\":\"10.4018/ijswis.297039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research on the identification model of orange origin based on machine learning in Near infrared (NIR) spectroscopy. According to the characteristics of NIR spectral data, a complete general framework for origin identification is proposed. It includes steps such as data preprocessing, feature selection, model building and cross validation. Compare multiple preprocessing algorithms and multiple machine learning algorithms under the framework. Based on NIR spectroscopy to identify the origin of orange, a good identification result was obtained. Improve the accuracy of orange origin identification and obtained the best origin identification accuracy of 92.8%.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"26 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.297039\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.297039","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

近红外光谱中基于机器学习的橙子产地识别模型研究。根据近红外光谱数据的特点,提出了一个完整的产地识别总体框架。它包括数据预处理、特征选择、模型构建和交叉验证等步骤。比较框架下的多种预处理算法和多种机器学习算法。采用近红外光谱法对橙子进行产地鉴别,取得了较好的鉴别结果。提高了橙源鉴定的准确度,获得了最佳的橙源鉴定准确率为92.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NIR Spectroscopy Oranges Origin Identification Framework Based on Machine Learning
Research on the identification model of orange origin based on machine learning in Near infrared (NIR) spectroscopy. According to the characteristics of NIR spectral data, a complete general framework for origin identification is proposed. It includes steps such as data preprocessing, feature selection, model building and cross validation. Compare multiple preprocessing algorithms and multiple machine learning algorithms under the framework. Based on NIR spectroscopy to identify the origin of orange, a good identification result was obtained. Improve the accuracy of orange origin identification and obtained the best origin identification accuracy of 92.8%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
期刊最新文献
A Web Semantic-Based Text Analysis Approach for Enhancing Named Entity Recognition Using PU-Learning and Negative Sampling Blockchain-Based Lightweight Authentication Mechanisms for Industrial Internet of Things and Information Systems A Network Intrusion Detection Method for Information Systems Using Federated Learning and Improved Transformer Semantic Trajectory Planning for Industrial Robotics Digital Copyright Management Mechanism Based on Dynamic Encryption for Multiplatform Browsers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1