{"title":"生成量子机器学习","authors":"Christa Zoufal","doi":"10.3929/ETHZ-B-000514692","DOIUrl":null,"url":null,"abstract":"The goal of generative machine learning is to model the probability distribution underlying a given data set. This probability distribution helps to characterize the generation process of the data samples. While classical generative machine learning is solely based on classical resources, generative quantum machine learning can also employ quantum resources - such as parameterized quantum channels and quantum operators - to learn and sample from the probability model of interest. \nApplications of generative (quantum) models are multifaceted. The trained model can generate new samples that are compatible with the given data and extend the data set. Additionally, learning a model for the generation process of a data set may provide interesting information about the corresponding properties. With the help of quantum resources, the respective generative models have access to functions that are difficult to evaluate with a classical computer and may improve the performance or lead to new insights. Furthermore, generative quantum machine learning can be applied to efficient, approximate loading of classical data into a quantum state which may help to avoid - potentially exponentially - expensive, exact quantum data loading. \nThe aim of this doctoral thesis is to develop new generative quantum machine learning algorithms, demonstrate their feasibility, and analyze their performance. Additionally, we outline their potential application to efficient, approximate quantum data loading. More specifically, we introduce a quantum generative adversarial network and a quantum Boltzmann machine implementation, both of which can be realized with parameterized quantum circuits. These algorithms are compatible with first-generation quantum hardware and, thus, enable us to study proof of concept implementations not only with numerical quantum simulations but also real quantum hardware available today.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"133 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generative Quantum Machine Learning\",\"authors\":\"Christa Zoufal\",\"doi\":\"10.3929/ETHZ-B-000514692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of generative machine learning is to model the probability distribution underlying a given data set. This probability distribution helps to characterize the generation process of the data samples. While classical generative machine learning is solely based on classical resources, generative quantum machine learning can also employ quantum resources - such as parameterized quantum channels and quantum operators - to learn and sample from the probability model of interest. \\nApplications of generative (quantum) models are multifaceted. The trained model can generate new samples that are compatible with the given data and extend the data set. Additionally, learning a model for the generation process of a data set may provide interesting information about the corresponding properties. With the help of quantum resources, the respective generative models have access to functions that are difficult to evaluate with a classical computer and may improve the performance or lead to new insights. Furthermore, generative quantum machine learning can be applied to efficient, approximate loading of classical data into a quantum state which may help to avoid - potentially exponentially - expensive, exact quantum data loading. \\nThe aim of this doctoral thesis is to develop new generative quantum machine learning algorithms, demonstrate their feasibility, and analyze their performance. Additionally, we outline their potential application to efficient, approximate quantum data loading. More specifically, we introduce a quantum generative adversarial network and a quantum Boltzmann machine implementation, both of which can be realized with parameterized quantum circuits. These algorithms are compatible with first-generation quantum hardware and, thus, enable us to study proof of concept implementations not only with numerical quantum simulations but also real quantum hardware available today.\",\"PeriodicalId\":8484,\"journal\":{\"name\":\"arXiv: Quantum Physics\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3929/ETHZ-B-000514692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-B-000514692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The goal of generative machine learning is to model the probability distribution underlying a given data set. This probability distribution helps to characterize the generation process of the data samples. While classical generative machine learning is solely based on classical resources, generative quantum machine learning can also employ quantum resources - such as parameterized quantum channels and quantum operators - to learn and sample from the probability model of interest.
Applications of generative (quantum) models are multifaceted. The trained model can generate new samples that are compatible with the given data and extend the data set. Additionally, learning a model for the generation process of a data set may provide interesting information about the corresponding properties. With the help of quantum resources, the respective generative models have access to functions that are difficult to evaluate with a classical computer and may improve the performance or lead to new insights. Furthermore, generative quantum machine learning can be applied to efficient, approximate loading of classical data into a quantum state which may help to avoid - potentially exponentially - expensive, exact quantum data loading.
The aim of this doctoral thesis is to develop new generative quantum machine learning algorithms, demonstrate their feasibility, and analyze their performance. Additionally, we outline their potential application to efficient, approximate quantum data loading. More specifically, we introduce a quantum generative adversarial network and a quantum Boltzmann machine implementation, both of which can be realized with parameterized quantum circuits. These algorithms are compatible with first-generation quantum hardware and, thus, enable us to study proof of concept implementations not only with numerical quantum simulations but also real quantum hardware available today.