利用受激生物强化技术加强对丙烯磷的修复

S. Siripattanakul-Ratpukdi, A. Vangnai, Warayut Patichot
{"title":"利用受激生物强化技术加强对丙烯磷的修复","authors":"S. Siripattanakul-Ratpukdi, A. Vangnai, Warayut Patichot","doi":"10.1515/JAOTS-2017-0025","DOIUrl":null,"url":null,"abstract":"Abstract Profenofos, an organophosphorus pesticide, has been reported its contamination in groundwater. The current study emphasized on the use of integrated bioaugmentation and biostimulation techniques to enhance profenofos bioremediation. A profenofos-degrading consortium including Pseudomonas strains was chosen as a bioaugmented culture. For stimulated condition adjustment, sodium succinate as an additional organic carbon supplement (4-500 mg-carbon/L) was applied in batch experiment. Column experiment was carried out for investigating profenofos remediation with different infiltration rates and cell numbers of 25 to 100 cm/d and 105 and 1015 CFU/mL, respectively. The batch result showed that the experiment with sodium succinate supplement efficiently degraded profenofos of more than 80%. At profenofos concentrations of 20 to 120 mg/L, the profenofos degradation ranged from 85 to 91%. For the column experiment, profenofos removal was between 30 to more than 90%. The infiltration rates and microbial numbers significantly affected the profenofos degradation. Lower infiltration rates or higher cell number resulted in higher profenofos removal performance. Based on the result from this study, it indicated that the profenofos degradation by the bioaugmented consortium under stimulated condition is effective and potential for future remediation practice.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Enhancement of Profenofos Remediation Using Stimulated Bioaugmentation Technique\",\"authors\":\"S. Siripattanakul-Ratpukdi, A. Vangnai, Warayut Patichot\",\"doi\":\"10.1515/JAOTS-2017-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Profenofos, an organophosphorus pesticide, has been reported its contamination in groundwater. The current study emphasized on the use of integrated bioaugmentation and biostimulation techniques to enhance profenofos bioremediation. A profenofos-degrading consortium including Pseudomonas strains was chosen as a bioaugmented culture. For stimulated condition adjustment, sodium succinate as an additional organic carbon supplement (4-500 mg-carbon/L) was applied in batch experiment. Column experiment was carried out for investigating profenofos remediation with different infiltration rates and cell numbers of 25 to 100 cm/d and 105 and 1015 CFU/mL, respectively. The batch result showed that the experiment with sodium succinate supplement efficiently degraded profenofos of more than 80%. At profenofos concentrations of 20 to 120 mg/L, the profenofos degradation ranged from 85 to 91%. For the column experiment, profenofos removal was between 30 to more than 90%. The infiltration rates and microbial numbers significantly affected the profenofos degradation. Lower infiltration rates or higher cell number resulted in higher profenofos removal performance. Based on the result from this study, it indicated that the profenofos degradation by the bioaugmented consortium under stimulated condition is effective and potential for future remediation practice.\",\"PeriodicalId\":14870,\"journal\":{\"name\":\"Journal of Advanced Oxidation Technologies\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Oxidation Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/JAOTS-2017-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JAOTS-2017-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 4

摘要

摘要有机磷农药丙烯磷在地下水中的污染已被报道。目前的研究重点是利用综合生物增强和生物刺激技术来加强丙诺威的生物修复。选择含假单胞菌菌株的丙烯磷降解联合体作为生物增强培养。在批量试验中,采用琥珀酸钠作为有机碳补充剂(4 ~ 500 mg-carbon/L)进行受激条件调节。在25 ~ 100 cm/d和105、1015 CFU/mL不同浸润速率和细胞数条件下,采用柱式实验研究了丙诺福斯的修复效果。批量试验结果表明,添加琥珀酸钠可有效降解80%以上的丙诺威。在浓度为20 ~ 120 mg/L的环境下,对异丙膦的降解率为85% ~ 91%。在柱式实验中,丙酚去除率在30% ~ 90%以上。入渗速率和微生物数量显著影响丙诺威的降解。较低的渗透速率或较高的细胞数导致较高的丙烯诺福斯去除性能。本研究结果表明,生物增强联合体在模拟条件下对丙诺威的降解是有效的,具有潜在的修复应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancement of Profenofos Remediation Using Stimulated Bioaugmentation Technique
Abstract Profenofos, an organophosphorus pesticide, has been reported its contamination in groundwater. The current study emphasized on the use of integrated bioaugmentation and biostimulation techniques to enhance profenofos bioremediation. A profenofos-degrading consortium including Pseudomonas strains was chosen as a bioaugmented culture. For stimulated condition adjustment, sodium succinate as an additional organic carbon supplement (4-500 mg-carbon/L) was applied in batch experiment. Column experiment was carried out for investigating profenofos remediation with different infiltration rates and cell numbers of 25 to 100 cm/d and 105 and 1015 CFU/mL, respectively. The batch result showed that the experiment with sodium succinate supplement efficiently degraded profenofos of more than 80%. At profenofos concentrations of 20 to 120 mg/L, the profenofos degradation ranged from 85 to 91%. For the column experiment, profenofos removal was between 30 to more than 90%. The infiltration rates and microbial numbers significantly affected the profenofos degradation. Lower infiltration rates or higher cell number resulted in higher profenofos removal performance. Based on the result from this study, it indicated that the profenofos degradation by the bioaugmented consortium under stimulated condition is effective and potential for future remediation practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.88
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs
期刊最新文献
Catalytic Ozonation of Ciprofloxacin over Cerium Oxide Modified SBA-15 and Toxicity Assessment towards E. coli Degradation of C.I. Acid Red 51 and C.I. Acid Blue 74 in Aqueous Solution by Combination of Hydrogen Peroxide, Nanocrystallite Zinc Oxide and Ultrasound Irradiation Degradation of Cyanide using Stabilized S, N-TiO2 Nanoparticles by Visible and Sun Light Environmental Matrix Effects on Degradation Kinetics of Ibuprofen in a UV/ Persulfate System An Overview of Ozone Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1