Yapei Zhang, Yang Liu, Xuefeng Gao, Xiaoming Li, Xiaoyan Niu, Zhi Yuan, Wei Wang
{"title":"近红外光诱导纳米颗粒增强肿瘤组织穿透和智能药物释放","authors":"Yapei Zhang, Yang Liu, Xuefeng Gao, Xiaoming Li, Xiaoyan Niu, Zhi Yuan, Wei Wang","doi":"10.2139/ssrn.3330023","DOIUrl":null,"url":null,"abstract":"Tumor tissue presents much denser and stiffer extracellular matrix (ECM), which can hinder the penetration of most nanoparticles (NPs) and contribute to the tumor cell proliferation. Here, NIR-activated losartan was encapsulated in hollow mesoporous prussian blue nanoparticles (HMPBs) to degrade ECM. The results showed that losartan enhanced the penetration of DOX, 1.47% of the injected dose (ID) of DOX reached the tumor tissues, which was 3.00-fold higher than the control group (0.49%). In addition, as the existence of thermo-sensitive lauric acid, (Losartan + DOX)@HMPBs could achieve near \"zero drug leakage\" during blood circulation, so as to reduce the damage of DOX to normal tissues. Furthermore, the animal experiments proved tumor inhibition ability of (Losartan + DOX)@HMPBs in synergistic of photothermal/chemotherapy, with the tumor growth inhibition rate of 81.3%. Taken together, these findings can be a candidate for developing vectors with enhanced tumor penetration and therapeutic effect in future clinical application. STATEMENT OF SIGNIFICANCE: Due to the existence of denser extracellular matrices (ECM), only 0.7% of the administered nanoparticles dose is delivered to tumor, which will limit the tumors' therapeutic effect. Degradation of ECM can improve the penetration of nanoparticles in tumors. However, no researchers has encapsulated losartan in nanoparticles to degrade ECM. Herein, we developed a NIR induced losartan and DOX co-delivery system based on hollow mesoporous prussian blue nanoparticles (HMPBs) to degrade ECM and improve the penetration of nanoparticles in tumors. The prepared nanoparticles can also acheive near \"zero drug leakage\" during blood circulation and \"fixed-point drug release\" in tumor, so as to reduce the damage of DOX to normal tissues. We believe the prepared nanoparticles provide a new platform for cancer treatment.","PeriodicalId":8928,"journal":{"name":"Biomaterials eJournal","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Near-Infrared-Light Induced Nanoparticles with Enhanced Tumor Tissue Penetration and Intelligent Drug Release\",\"authors\":\"Yapei Zhang, Yang Liu, Xuefeng Gao, Xiaoming Li, Xiaoyan Niu, Zhi Yuan, Wei Wang\",\"doi\":\"10.2139/ssrn.3330023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tumor tissue presents much denser and stiffer extracellular matrix (ECM), which can hinder the penetration of most nanoparticles (NPs) and contribute to the tumor cell proliferation. Here, NIR-activated losartan was encapsulated in hollow mesoporous prussian blue nanoparticles (HMPBs) to degrade ECM. The results showed that losartan enhanced the penetration of DOX, 1.47% of the injected dose (ID) of DOX reached the tumor tissues, which was 3.00-fold higher than the control group (0.49%). In addition, as the existence of thermo-sensitive lauric acid, (Losartan + DOX)@HMPBs could achieve near \\\"zero drug leakage\\\" during blood circulation, so as to reduce the damage of DOX to normal tissues. Furthermore, the animal experiments proved tumor inhibition ability of (Losartan + DOX)@HMPBs in synergistic of photothermal/chemotherapy, with the tumor growth inhibition rate of 81.3%. Taken together, these findings can be a candidate for developing vectors with enhanced tumor penetration and therapeutic effect in future clinical application. STATEMENT OF SIGNIFICANCE: Due to the existence of denser extracellular matrices (ECM), only 0.7% of the administered nanoparticles dose is delivered to tumor, which will limit the tumors' therapeutic effect. Degradation of ECM can improve the penetration of nanoparticles in tumors. However, no researchers has encapsulated losartan in nanoparticles to degrade ECM. Herein, we developed a NIR induced losartan and DOX co-delivery system based on hollow mesoporous prussian blue nanoparticles (HMPBs) to degrade ECM and improve the penetration of nanoparticles in tumors. The prepared nanoparticles can also acheive near \\\"zero drug leakage\\\" during blood circulation and \\\"fixed-point drug release\\\" in tumor, so as to reduce the damage of DOX to normal tissues. We believe the prepared nanoparticles provide a new platform for cancer treatment.\",\"PeriodicalId\":8928,\"journal\":{\"name\":\"Biomaterials eJournal\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3330023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3330023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Near-Infrared-Light Induced Nanoparticles with Enhanced Tumor Tissue Penetration and Intelligent Drug Release
Tumor tissue presents much denser and stiffer extracellular matrix (ECM), which can hinder the penetration of most nanoparticles (NPs) and contribute to the tumor cell proliferation. Here, NIR-activated losartan was encapsulated in hollow mesoporous prussian blue nanoparticles (HMPBs) to degrade ECM. The results showed that losartan enhanced the penetration of DOX, 1.47% of the injected dose (ID) of DOX reached the tumor tissues, which was 3.00-fold higher than the control group (0.49%). In addition, as the existence of thermo-sensitive lauric acid, (Losartan + DOX)@HMPBs could achieve near "zero drug leakage" during blood circulation, so as to reduce the damage of DOX to normal tissues. Furthermore, the animal experiments proved tumor inhibition ability of (Losartan + DOX)@HMPBs in synergistic of photothermal/chemotherapy, with the tumor growth inhibition rate of 81.3%. Taken together, these findings can be a candidate for developing vectors with enhanced tumor penetration and therapeutic effect in future clinical application. STATEMENT OF SIGNIFICANCE: Due to the existence of denser extracellular matrices (ECM), only 0.7% of the administered nanoparticles dose is delivered to tumor, which will limit the tumors' therapeutic effect. Degradation of ECM can improve the penetration of nanoparticles in tumors. However, no researchers has encapsulated losartan in nanoparticles to degrade ECM. Herein, we developed a NIR induced losartan and DOX co-delivery system based on hollow mesoporous prussian blue nanoparticles (HMPBs) to degrade ECM and improve the penetration of nanoparticles in tumors. The prepared nanoparticles can also acheive near "zero drug leakage" during blood circulation and "fixed-point drug release" in tumor, so as to reduce the damage of DOX to normal tissues. We believe the prepared nanoparticles provide a new platform for cancer treatment.