原子-分子级控制的金属-有机分子界面的等离子光化学

勝佳 池田
{"title":"原子-分子级控制的金属-有机分子界面的等离子光化学","authors":"勝佳 池田","doi":"10.3175/MOLSCI.5.A0040","DOIUrl":null,"url":null,"abstract":"Highly localized plasmons can be excited at atomically smooth metal surfaces by using a sphere-plane type plasmonic cavity. This plasmonic structure can be optimized for use in well-organized self-assembled monolayers formed on various single crystalline metal substrates including highly damping platinum-group catalytic metals, and is therefore useful in the fields of molecular science, catalytic science, and surface science. Surface enhanced Raman scattering (SERS) observation at well-defined molecule-metal interfaces revealed crystallographic orientation dependence not only in adsorption geometry of the molecules but also in the signal enhancement, suggesting a contribution of interfacial charge transfer resonances between metal states and molecular affinity levels. Moreover, this method enables us to increase efficiency of various photochemical processes such as photo-energy conversion when photo-sensitive molecular layers are formed on a substrate. The use of well-defined metal-organic system in plasmonic cavities opens up a new possibility of spectroscopy and photochemistry.","PeriodicalId":19105,"journal":{"name":"Molecular Science","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"原子・分子レベルで制御された金属-有機分子界面におけるプラズモニック光化学\",\"authors\":\"勝佳 池田\",\"doi\":\"10.3175/MOLSCI.5.A0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly localized plasmons can be excited at atomically smooth metal surfaces by using a sphere-plane type plasmonic cavity. This plasmonic structure can be optimized for use in well-organized self-assembled monolayers formed on various single crystalline metal substrates including highly damping platinum-group catalytic metals, and is therefore useful in the fields of molecular science, catalytic science, and surface science. Surface enhanced Raman scattering (SERS) observation at well-defined molecule-metal interfaces revealed crystallographic orientation dependence not only in adsorption geometry of the molecules but also in the signal enhancement, suggesting a contribution of interfacial charge transfer resonances between metal states and molecular affinity levels. Moreover, this method enables us to increase efficiency of various photochemical processes such as photo-energy conversion when photo-sensitive molecular layers are formed on a substrate. The use of well-defined metal-organic system in plasmonic cavities opens up a new possibility of spectroscopy and photochemistry.\",\"PeriodicalId\":19105,\"journal\":{\"name\":\"Molecular Science\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3175/MOLSCI.5.A0040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3175/MOLSCI.5.A0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用球平面型等离子体腔可以在原子光滑的金属表面激发高度局域化的等离子体。这种等离子体结构可以优化用于在各种单晶金属衬底上形成的组织良好的自组装单层,包括高阻尼铂族催化金属,因此在分子科学,催化科学和表面科学领域非常有用。表面增强拉曼散射(SERS)在分子-金属界面上的观察表明,晶体取向不仅依赖于分子的吸附几何形状,而且还依赖于信号增强,表明金属态和分子亲和水平之间的界面电荷转移共振有贡献。此外,当在衬底上形成光敏分子层时,该方法使我们能够提高各种光化学过程的效率,例如光能转换。在等离子体腔中使用定义良好的金属-有机体系,为光谱学和光化学开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原子・分子レベルで制御された金属-有機分子界面におけるプラズモニック光化学
Highly localized plasmons can be excited at atomically smooth metal surfaces by using a sphere-plane type plasmonic cavity. This plasmonic structure can be optimized for use in well-organized self-assembled monolayers formed on various single crystalline metal substrates including highly damping platinum-group catalytic metals, and is therefore useful in the fields of molecular science, catalytic science, and surface science. Surface enhanced Raman scattering (SERS) observation at well-defined molecule-metal interfaces revealed crystallographic orientation dependence not only in adsorption geometry of the molecules but also in the signal enhancement, suggesting a contribution of interfacial charge transfer resonances between metal states and molecular affinity levels. Moreover, this method enables us to increase efficiency of various photochemical processes such as photo-energy conversion when photo-sensitive molecular layers are formed on a substrate. The use of well-defined metal-organic system in plasmonic cavities opens up a new possibility of spectroscopy and photochemistry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional Electrochemistry based on the Strong Coupling Phenomena アト秒電子パルスの発生と電子回折への応用 接着の分子科学 分子科学的視点に基づく表面反応の理論的研究 Personal Draft of Studying Macroscopic Physical Properties as a Molecular Science: Molecular Dynamics and Internal Motional/Conformational Degrees of Freedom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1