{"title":"一种基于双层电子束的小型化贴片多天线结构","authors":"Soham Ghosh, Thanh-Ngon Tran, T. Le-Ngoc","doi":"10.1109/APS.2011.5996852","DOIUrl":null,"url":null,"abstract":"Based on the concept of slow wave propagation, a dual-layer electromagnetic band gap (EBG) mushroom structure is used to reduce the area of a patch multi-antenna sub-system. While the inner layer aids in the antenna miniaturization, the more compact upper layer helps in further reduction of the mutual coupling between the miniaturized patch antennas which is otherwise not possible for a single-layer EBG. Simulation is also performed for the mutual coupling and radiation characteristics of the multi-antenna structure for different inter-element separations which are experimentally verified.","PeriodicalId":6449,"journal":{"name":"2011 IEEE International Symposium on Antennas and Propagation (APSURSI)","volume":"1 1","pages":"1828-1831"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A dual-layer EBG-based miniaturized patch multi-antenna structure\",\"authors\":\"Soham Ghosh, Thanh-Ngon Tran, T. Le-Ngoc\",\"doi\":\"10.1109/APS.2011.5996852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the concept of slow wave propagation, a dual-layer electromagnetic band gap (EBG) mushroom structure is used to reduce the area of a patch multi-antenna sub-system. While the inner layer aids in the antenna miniaturization, the more compact upper layer helps in further reduction of the mutual coupling between the miniaturized patch antennas which is otherwise not possible for a single-layer EBG. Simulation is also performed for the mutual coupling and radiation characteristics of the multi-antenna structure for different inter-element separations which are experimentally verified.\",\"PeriodicalId\":6449,\"journal\":{\"name\":\"2011 IEEE International Symposium on Antennas and Propagation (APSURSI)\",\"volume\":\"1 1\",\"pages\":\"1828-1831\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Antennas and Propagation (APSURSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.2011.5996852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Antennas and Propagation (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2011.5996852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A dual-layer EBG-based miniaturized patch multi-antenna structure
Based on the concept of slow wave propagation, a dual-layer electromagnetic band gap (EBG) mushroom structure is used to reduce the area of a patch multi-antenna sub-system. While the inner layer aids in the antenna miniaturization, the more compact upper layer helps in further reduction of the mutual coupling between the miniaturized patch antennas which is otherwise not possible for a single-layer EBG. Simulation is also performed for the mutual coupling and radiation characteristics of the multi-antenna structure for different inter-element separations which are experimentally verified.