持续信息级联学习

Fan Zhou, Xin Jing, Xovee Xu, Ting Zhong, Goce Trajcevski, Jin Wu
{"title":"持续信息级联学习","authors":"Fan Zhou, Xin Jing, Xovee Xu, Ting Zhong, Goce Trajcevski, Jin Wu","doi":"10.1109/GLOBECOM42002.2020.9322124","DOIUrl":null,"url":null,"abstract":"Modeling the information diffusion process is an essential step towards understanding the mechanisms driving the success of information. Existing methods either exploit various features associated with cascades to study the underlying factors governing information propagation, or leverage graph representation techniques to model the diffusion process in an end-to-end manner. Current solutions are only valid for a static and fixed observation scenario and fail to handle increasing observations due to the challenge of catastrophic forgetting problems inherent in the machine learning approaches used for modeling and predicting cascades. To remedy this issue, we propose a novel dynamic information diffusion model CICP (Continual Information Cascades Prediction). CICP employs graph neural networks for modeling information diffusion and continually adapts to increasing observations. It is capable of capturing the correlations between successive observations while preserving the important parameters regarding cascade evolution and transition. Experiments conducted on real-world cascade datasets demonstrate that our method not only improves the prediction performance with accumulated data but also prevents the model from forgetting previously trained tasks.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"126 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Continual Information Cascade Learning\",\"authors\":\"Fan Zhou, Xin Jing, Xovee Xu, Ting Zhong, Goce Trajcevski, Jin Wu\",\"doi\":\"10.1109/GLOBECOM42002.2020.9322124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling the information diffusion process is an essential step towards understanding the mechanisms driving the success of information. Existing methods either exploit various features associated with cascades to study the underlying factors governing information propagation, or leverage graph representation techniques to model the diffusion process in an end-to-end manner. Current solutions are only valid for a static and fixed observation scenario and fail to handle increasing observations due to the challenge of catastrophic forgetting problems inherent in the machine learning approaches used for modeling and predicting cascades. To remedy this issue, we propose a novel dynamic information diffusion model CICP (Continual Information Cascades Prediction). CICP employs graph neural networks for modeling information diffusion and continually adapts to increasing observations. It is capable of capturing the correlations between successive observations while preserving the important parameters regarding cascade evolution and transition. Experiments conducted on real-world cascade datasets demonstrate that our method not only improves the prediction performance with accumulated data but also prevents the model from forgetting previously trained tasks.\",\"PeriodicalId\":12759,\"journal\":{\"name\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"volume\":\"126 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM42002.2020.9322124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对信息扩散过程进行建模是理解驱动信息成功的机制的必要步骤。现有的方法要么利用与级联相关的各种特征来研究控制信息传播的潜在因素,要么利用图表示技术以端到端方式对扩散过程进行建模。目前的解决方案仅适用于静态和固定的观测场景,并且由于用于建模和预测级联的机器学习方法固有的灾难性遗忘问题的挑战,无法处理越来越多的观测。为了解决这个问题,我们提出了一种新的动态信息扩散模型CICP(连续信息级联预测)。CICP采用图神经网络对信息扩散进行建模,并不断适应不断增加的观测值。它能够捕获连续观测之间的相关性,同时保留有关级联演化和过渡的重要参数。在真实的级联数据集上进行的实验表明,我们的方法不仅可以提高累积数据的预测性能,而且可以防止模型忘记先前训练过的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continual Information Cascade Learning
Modeling the information diffusion process is an essential step towards understanding the mechanisms driving the success of information. Existing methods either exploit various features associated with cascades to study the underlying factors governing information propagation, or leverage graph representation techniques to model the diffusion process in an end-to-end manner. Current solutions are only valid for a static and fixed observation scenario and fail to handle increasing observations due to the challenge of catastrophic forgetting problems inherent in the machine learning approaches used for modeling and predicting cascades. To remedy this issue, we propose a novel dynamic information diffusion model CICP (Continual Information Cascades Prediction). CICP employs graph neural networks for modeling information diffusion and continually adapts to increasing observations. It is capable of capturing the correlations between successive observations while preserving the important parameters regarding cascade evolution and transition. Experiments conducted on real-world cascade datasets demonstrate that our method not only improves the prediction performance with accumulated data but also prevents the model from forgetting previously trained tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AirID: Injecting a Custom RF Fingerprint for Enhanced UAV Identification using Deep Learning Oversampling Algorithm based on Reinforcement Learning in Imbalanced Problems FAST-RAM: A Fast AI-assistant Solution for Task Offloading and Resource Allocation in MEC Achieving Privacy-Preserving Vehicle Selection for Effective Content Dissemination in Smart Cities Age-optimal Transmission Policy for Markov Source with Differential Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1