模拟极地盆地的地形波

IF 1.1 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Geophysical and Astrophysical Fluid Dynamics Pub Date : 2021-09-06 DOI:10.1080/03091929.2021.1954631
Madeleine Cockerill, A. Bassom, Andrew J. Willmott
{"title":"模拟极地盆地的地形波","authors":"Madeleine Cockerill, A. Bassom, Andrew J. Willmott","doi":"10.1080/03091929.2021.1954631","DOIUrl":null,"url":null,"abstract":"This study is concerned with properties of freely propagating barotropic Rossby waves in a circular polar cap, a prototype model for the Arctic Ocean. The linearised shallow-water equations are used to derive an amplitude equation for the waves in which full spherical geometry is retained. Almost by definition, polar basin dynamics are confined to regions of limited latitudinal extent and this provides a natural small scale which can underpin a rational asymptotic analysis of the amplitude equation. The coefficients of this equation depend on the topography of the basin and, as a simple model of the Arctic basin, we assume that the basin interior is characterised by a constant depth, surrounded by a continental shelf-slope the depth of which has algebraic dependence on co-latitude. Isobaths are therefore a family of concentric circles with centre at the pole. On the shelf and slope regions the leading order amplitude equation is of straightforward Euler type. Asymptotic values of the wave frequencies are derived and these are compared to values computed directly from the full amplitude equation. It is shown that the analytic results are in very good accord with the numerical predictions. Further simulations show that the properties of the waves are not particularly sensitive to the precise details of the underlying topography; this is reassuring as it is difficult to faithfully represent the shelf topography using simple mathematical functions.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"35 1","pages":"1 - 19"},"PeriodicalIF":1.1000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling topographic waves in a polar basin\",\"authors\":\"Madeleine Cockerill, A. Bassom, Andrew J. Willmott\",\"doi\":\"10.1080/03091929.2021.1954631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is concerned with properties of freely propagating barotropic Rossby waves in a circular polar cap, a prototype model for the Arctic Ocean. The linearised shallow-water equations are used to derive an amplitude equation for the waves in which full spherical geometry is retained. Almost by definition, polar basin dynamics are confined to regions of limited latitudinal extent and this provides a natural small scale which can underpin a rational asymptotic analysis of the amplitude equation. The coefficients of this equation depend on the topography of the basin and, as a simple model of the Arctic basin, we assume that the basin interior is characterised by a constant depth, surrounded by a continental shelf-slope the depth of which has algebraic dependence on co-latitude. Isobaths are therefore a family of concentric circles with centre at the pole. On the shelf and slope regions the leading order amplitude equation is of straightforward Euler type. Asymptotic values of the wave frequencies are derived and these are compared to values computed directly from the full amplitude equation. It is shown that the analytic results are in very good accord with the numerical predictions. Further simulations show that the properties of the waves are not particularly sensitive to the precise details of the underlying topography; this is reassuring as it is difficult to faithfully represent the shelf topography using simple mathematical functions.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"35 1\",\"pages\":\"1 - 19\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2021.1954631\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2021.1954631","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了北冰洋圆形极帽中自由传播的正压罗斯比波的特性,这是北冰洋的一个原型模型。用线性化的浅水方程推导出保留完整球面几何形状的波的振幅方程。几乎根据定义,极地盆地动力学局限于有限纬度范围的区域,这提供了一个自然的小尺度,可以支持振幅方程的合理渐近分析。这个方程的系数取决于盆地的地形,作为北极盆地的一个简单模型,我们假设盆地内部的特征是深度恒定,周围是大陆架斜坡,其深度与共纬度有代数依赖关系。因此,等深线是一组以极点为中心的同心圆。在陆架和斜坡区,阶振幅方程是直接的欧拉型。导出了波频率的渐近值,并将这些值与直接从全振幅方程计算的值进行了比较。结果表明,解析结果与数值预测结果非常吻合。进一步的模拟表明,波的性质对底层地形的精确细节并不特别敏感;这是令人放心的,因为很难用简单的数学函数忠实地表示陆架地形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling topographic waves in a polar basin
This study is concerned with properties of freely propagating barotropic Rossby waves in a circular polar cap, a prototype model for the Arctic Ocean. The linearised shallow-water equations are used to derive an amplitude equation for the waves in which full spherical geometry is retained. Almost by definition, polar basin dynamics are confined to regions of limited latitudinal extent and this provides a natural small scale which can underpin a rational asymptotic analysis of the amplitude equation. The coefficients of this equation depend on the topography of the basin and, as a simple model of the Arctic basin, we assume that the basin interior is characterised by a constant depth, surrounded by a continental shelf-slope the depth of which has algebraic dependence on co-latitude. Isobaths are therefore a family of concentric circles with centre at the pole. On the shelf and slope regions the leading order amplitude equation is of straightforward Euler type. Asymptotic values of the wave frequencies are derived and these are compared to values computed directly from the full amplitude equation. It is shown that the analytic results are in very good accord with the numerical predictions. Further simulations show that the properties of the waves are not particularly sensitive to the precise details of the underlying topography; this is reassuring as it is difficult to faithfully represent the shelf topography using simple mathematical functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical and Astrophysical Fluid Dynamics
Geophysical and Astrophysical Fluid Dynamics 地学天文-地球化学与地球物理
CiteScore
3.10
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects. In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.
期刊最新文献
Zonostrophic instabilities in magnetohydrodynamic Kolmogorov flow Scales of vertical motions due to an isolated vortex in ageostrophic balanced flows Can the observable solar activity spectrum be reproduced by a simple dynamo model? Solitary wave scattering by segmented arc-shaped breakwater Self-adjointness of sound-proof models for magnetic buoyancy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1