基于增强现实和室内定位的智能工厂维护应用的上下文感知辅助系统

Holger Flatt, N. Koch, C. Röcker, Andrei Günter, J. Jasperneite
{"title":"基于增强现实和室内定位的智能工厂维护应用的上下文感知辅助系统","authors":"Holger Flatt, N. Koch, C. Röcker, Andrei Günter, J. Jasperneite","doi":"10.1109/ETFA.2015.7301586","DOIUrl":null,"url":null,"abstract":"The term Industrie 4.0 carries the vision of smart factories, which automatically adapt to changes and assist the human as much as possible during operation and maintenance. This includes smart human machine interfaces, which reduce the chances of errors and help to make the right decisions. This paper presents an approach to equip the maintenance software running on a tablet PC with augmented reality functionality to be able to place virtual sticky notes at production modules. Additionally, these sticky notes are enriched with position information. The central element of this approach is an ontology-based context-aware framework, which aggregates and processes data from different sources. As a result, a tablet PC application was implemented, which allows displaying maintenance information as well as live plant process data in the form of augmented reality. More than 100 of those sticky notes can be placed using this system, whereas each note requires a file size of 12 to 16 kilo bytes. After placing a sticky note, the system recognizes it even if the camera's position is not exactly the same as during the placing process.","PeriodicalId":6862,"journal":{"name":"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)","volume":"5 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"A context-aware assistance system for maintenance applications in smart factories based on augmented reality and indoor localization\",\"authors\":\"Holger Flatt, N. Koch, C. Röcker, Andrei Günter, J. Jasperneite\",\"doi\":\"10.1109/ETFA.2015.7301586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The term Industrie 4.0 carries the vision of smart factories, which automatically adapt to changes and assist the human as much as possible during operation and maintenance. This includes smart human machine interfaces, which reduce the chances of errors and help to make the right decisions. This paper presents an approach to equip the maintenance software running on a tablet PC with augmented reality functionality to be able to place virtual sticky notes at production modules. Additionally, these sticky notes are enriched with position information. The central element of this approach is an ontology-based context-aware framework, which aggregates and processes data from different sources. As a result, a tablet PC application was implemented, which allows displaying maintenance information as well as live plant process data in the form of augmented reality. More than 100 of those sticky notes can be placed using this system, whereas each note requires a file size of 12 to 16 kilo bytes. After placing a sticky note, the system recognizes it even if the camera's position is not exactly the same as during the placing process.\",\"PeriodicalId\":6862,\"journal\":{\"name\":\"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)\",\"volume\":\"5 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2015.7301586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2015.7301586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

工业4.0这个术语承载了智能工厂的愿景,智能工厂可以自动适应变化,并在操作和维护过程中尽可能地帮助人类。这包括智能人机界面,它减少了出错的机会,并有助于做出正确的决定。本文提出了一种为运行在平板电脑上的维护软件配备增强现实功能的方法,以便能够在生产模块上放置虚拟便利贴。此外,这些便利贴还包含丰富的职位信息。该方法的核心元素是基于本体的上下文感知框架,该框架聚合和处理来自不同来源的数据。因此,实现了一个平板电脑应用程序,它允许以增强现实的形式显示维护信息以及现场工厂过程数据。使用该系统可以放置100多张这样的便利贴,而每张便利贴需要12到16千字节的文件大小。在放置便利贴后,即使相机的位置与放置过程中的位置不完全相同,系统也会识别它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A context-aware assistance system for maintenance applications in smart factories based on augmented reality and indoor localization
The term Industrie 4.0 carries the vision of smart factories, which automatically adapt to changes and assist the human as much as possible during operation and maintenance. This includes smart human machine interfaces, which reduce the chances of errors and help to make the right decisions. This paper presents an approach to equip the maintenance software running on a tablet PC with augmented reality functionality to be able to place virtual sticky notes at production modules. Additionally, these sticky notes are enriched with position information. The central element of this approach is an ontology-based context-aware framework, which aggregates and processes data from different sources. As a result, a tablet PC application was implemented, which allows displaying maintenance information as well as live plant process data in the form of augmented reality. More than 100 of those sticky notes can be placed using this system, whereas each note requires a file size of 12 to 16 kilo bytes. After placing a sticky note, the system recognizes it even if the camera's position is not exactly the same as during the placing process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Schedulability using native non-preemptive groups on an AUTOSAR/OSEK platform Towards an integrated use of simulation within the life-cycle of a process plant Engineering and operation made easy - a semantics and service oriented approach to building automation Control application for Internet of Things energy meter — A key part of integrated building energy management system A hybrid-based error detection technique for PLC-based Industrial Control Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1