氨基酸基离子液体制备的“干物质”对co2的吸收性能

M. Miyake, M. Satoh
{"title":"氨基酸基离子液体制备的“干物质”对co2的吸收性能","authors":"M. Miyake, M. Satoh","doi":"10.4236/GSC.2017.73016","DOIUrl":null,"url":null,"abstract":"Dry Matter (DM) is a powdery substance which is composed of micro droplets and surrounding hydrophobic silica nanoparticles. Because of the much larger surface area than that of the corresponding bulk liquid, DM, which contains amino-functionalized ionic liquids (ILs), is a promising CO2 absorption material provided with quick absorption speed. In the present study, we successfully prepared powdery DMs by utilizing aqueous solutions of amino acid-based ILs (tetraethylammonium glycine [N2222][Gly], and tetraethylammonium alanine [N2222][Ala]). Although a DM with lysine-based IL (N2222) [Lys]) was also prepared, only a souffle-like material was obtained. We measured CO2 absorption performance for the DMs to find that the mass-base absorption ability (mass-base A.A.) (CO2 mol/DM kg) and the mol-base one (CO2 mol/IL mol) of [N2222][Lys] were ca. two times of [N2222][Gly] and [N2222][Ala], while the absorption speed of the former was inferior to the latter two, i.e., ca.15 min vs. 5 min for 90% absorption. In order to improve the mass-base A.A. of [N2222][Gly], we used 10% of aqueous poly(allylamine) (PAlAm) solution instead of water. The resultant mass-base A.A. proved to be significantly larger (1.9) than either of those of the respective single component systems (1.1 and 0.75 for the bulk IL and aq. PAlAm, respectively), and comparable to the A.A. (1.6 - 2.5) of 20% - 30% monoethanolamine solution which is commonly used in industrial application.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CO 2 Absorption Performance of “Dry Matter” Prepared with Amino Acid-Based Ionic Liquids\",\"authors\":\"M. Miyake, M. Satoh\",\"doi\":\"10.4236/GSC.2017.73016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dry Matter (DM) is a powdery substance which is composed of micro droplets and surrounding hydrophobic silica nanoparticles. Because of the much larger surface area than that of the corresponding bulk liquid, DM, which contains amino-functionalized ionic liquids (ILs), is a promising CO2 absorption material provided with quick absorption speed. In the present study, we successfully prepared powdery DMs by utilizing aqueous solutions of amino acid-based ILs (tetraethylammonium glycine [N2222][Gly], and tetraethylammonium alanine [N2222][Ala]). Although a DM with lysine-based IL (N2222) [Lys]) was also prepared, only a souffle-like material was obtained. We measured CO2 absorption performance for the DMs to find that the mass-base absorption ability (mass-base A.A.) (CO2 mol/DM kg) and the mol-base one (CO2 mol/IL mol) of [N2222][Lys] were ca. two times of [N2222][Gly] and [N2222][Ala], while the absorption speed of the former was inferior to the latter two, i.e., ca.15 min vs. 5 min for 90% absorption. In order to improve the mass-base A.A. of [N2222][Gly], we used 10% of aqueous poly(allylamine) (PAlAm) solution instead of water. The resultant mass-base A.A. proved to be significantly larger (1.9) than either of those of the respective single component systems (1.1 and 0.75 for the bulk IL and aq. PAlAm, respectively), and comparable to the A.A. (1.6 - 2.5) of 20% - 30% monoethanolamine solution which is commonly used in industrial application.\",\"PeriodicalId\":12770,\"journal\":{\"name\":\"Green and Sustainable Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green and Sustainable Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/GSC.2017.73016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/GSC.2017.73016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

干物质(DM)是一种由微液滴和周围的疏水性二氧化硅纳米颗粒组成的粉状物质。DM含有氨基功能化离子液体(il),由于其比相应的散装液体表面积大得多,吸收速度快,是一种很有前途的CO2吸收材料。在本研究中,我们利用氨基酸基il(四乙基甘氨酸铵[N2222][Gly]和四乙基丙氨酸铵[N2222][Ala])的水溶液成功制备了粉末状DMs。虽然也制备了含有赖氨酸基IL (N2222) [Lys])的DM,但得到的只是蛋奶酥状材料。测定了DMs的CO2吸收性能,发现[N2222][Lys]的质量基吸收能力(质量基a.a) (CO2 mol/DM kg)和摩尔基吸收能力(CO2 mol/IL mol)是[N2222][Gly]和[N2222][Ala]的约2倍,而前者的吸收速度低于后两者,即吸收90%时约15 min vs. 5 min。为了提高[N2222][Gly]的质量基A.A.,我们用10%的聚烯丙胺(PAlAm)水溶液代替水。所得的质量基a.a值(1.9)明显大于各自的单组分体系(散装IL和aq. PAlAm分别为1.1和0.75),并且与工业应用中常用的20% - 30%单乙醇胺溶液的a.a值(1.6 - 2.5)相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CO 2 Absorption Performance of “Dry Matter” Prepared with Amino Acid-Based Ionic Liquids
Dry Matter (DM) is a powdery substance which is composed of micro droplets and surrounding hydrophobic silica nanoparticles. Because of the much larger surface area than that of the corresponding bulk liquid, DM, which contains amino-functionalized ionic liquids (ILs), is a promising CO2 absorption material provided with quick absorption speed. In the present study, we successfully prepared powdery DMs by utilizing aqueous solutions of amino acid-based ILs (tetraethylammonium glycine [N2222][Gly], and tetraethylammonium alanine [N2222][Ala]). Although a DM with lysine-based IL (N2222) [Lys]) was also prepared, only a souffle-like material was obtained. We measured CO2 absorption performance for the DMs to find that the mass-base absorption ability (mass-base A.A.) (CO2 mol/DM kg) and the mol-base one (CO2 mol/IL mol) of [N2222][Lys] were ca. two times of [N2222][Gly] and [N2222][Ala], while the absorption speed of the former was inferior to the latter two, i.e., ca.15 min vs. 5 min for 90% absorption. In order to improve the mass-base A.A. of [N2222][Gly], we used 10% of aqueous poly(allylamine) (PAlAm) solution instead of water. The resultant mass-base A.A. proved to be significantly larger (1.9) than either of those of the respective single component systems (1.1 and 0.75 for the bulk IL and aq. PAlAm, respectively), and comparable to the A.A. (1.6 - 2.5) of 20% - 30% monoethanolamine solution which is commonly used in industrial application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a Certified Reference Material from Caffeine Solution for Assuring the Quality of Food and Drug Measurements Environmentally Friendly Room Temperature Synthesis of 1-Tetralone over Layered Double Hydroxide-Hosted Sulphonato-Salen-Nickel(II) Complex Production of Biogas from Olive Mill Waste Waters Treated by Cow Manure Wastewater Treatment Trial by Double Filtration on Granular Activated Carbon (GAC) Prepared from Peanut Shells Electrochemically and Ultrasonically-Enhanced Coagulation for Algae Removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1