气缸内滚动无滑移弹跳

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED Journal of Geometric Mechanics Pub Date : 2018-08-25 DOI:10.3934/jgm.2020004
T. Chumley, Scott Cook, Christopher Cox, R. Feres
{"title":"气缸内滚动无滑移弹跳","authors":"T. Chumley, Scott Cook, Christopher Cox, R. Feres","doi":"10.3934/jgm.2020004","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to compare a classical non-holonomic system---a sphere rolling against the inner surface of a vertical cylinder under gravity---and a class of discrete dynamical systems known as no-slip billiards in similar configurations. A well-known notable feature of the non-holonomic system is that the rolling sphere does not fall; its height function is bounded and oscillates harmonically up and down. The central issue of the present work is whether similar bounded behavior can be observed in the no-slip billiard counterpart. Our main results are as follows: for circular cylinders in dimension $3$, the no-slip billiard has the bounded orbits property, and very closely approximates rolling motion, for a class of initial conditions which we call transversal rolling impact. When this condition does not hold, trajectories undergo vertical oscillations superimposed to an overall downward acceleration. Considering cylinders with different cross-section shapes, we show that no-slip billiards between two parallel hyperplanes in Euclidean space of arbitrary dimension are always bounded even under a constant force parallel to the plates; for general cylinders, when the orbit of the transverse system (a concept that depends on a factorization of the motion into transversal and longitudinal components) has period two---a very common occurrence in planar no-slip billiards---the motion in the longitudinal direction, under no forces, is generically not bounded. This is shown using a formula for a longitudinal linear drift that we prove in arbitrary dimensions. While the systems for which we can prove the existence of bounded orbits have relatively simple transverse dynamics, we also briefly explore numerically a no-slip billiard system, namely the stadium cylinder billiard, that can exhibit chaotic transversal dynamics.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Rolling and no-slip bouncing in cylinders\",\"authors\":\"T. Chumley, Scott Cook, Christopher Cox, R. Feres\",\"doi\":\"10.3934/jgm.2020004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to compare a classical non-holonomic system---a sphere rolling against the inner surface of a vertical cylinder under gravity---and a class of discrete dynamical systems known as no-slip billiards in similar configurations. A well-known notable feature of the non-holonomic system is that the rolling sphere does not fall; its height function is bounded and oscillates harmonically up and down. The central issue of the present work is whether similar bounded behavior can be observed in the no-slip billiard counterpart. Our main results are as follows: for circular cylinders in dimension $3$, the no-slip billiard has the bounded orbits property, and very closely approximates rolling motion, for a class of initial conditions which we call transversal rolling impact. When this condition does not hold, trajectories undergo vertical oscillations superimposed to an overall downward acceleration. Considering cylinders with different cross-section shapes, we show that no-slip billiards between two parallel hyperplanes in Euclidean space of arbitrary dimension are always bounded even under a constant force parallel to the plates; for general cylinders, when the orbit of the transverse system (a concept that depends on a factorization of the motion into transversal and longitudinal components) has period two---a very common occurrence in planar no-slip billiards---the motion in the longitudinal direction, under no forces, is generically not bounded. This is shown using a formula for a longitudinal linear drift that we prove in arbitrary dimensions. While the systems for which we can prove the existence of bounded orbits have relatively simple transverse dynamics, we also briefly explore numerically a no-slip billiard system, namely the stadium cylinder billiard, that can exhibit chaotic transversal dynamics.\",\"PeriodicalId\":49161,\"journal\":{\"name\":\"Journal of Geometric Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jgm.2020004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2020004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

本文的目的是比较一个经典的非完整系统-一个在重力作用下沿垂直圆柱体的内表面滚动的球体-和一类被称为防滑台球的离散动力系统在类似的构型。非完整系统的一个众所周知的显著特征是滚动的球体不下落;它的高度函数是有界的,上下谐波振荡。本工作的中心问题是是否可以观察到类似的有界行为,在无滑移台球对应物。我们的主要结果如下:对于尺寸为$3$的圆柱,无滑移台球具有有界轨道性质,并且在一类初始条件下非常近似于滚动运动,我们称之为横向滚动碰撞。当这个条件不成立时,轨迹经历垂直振荡叠加到整体向下的加速度。考虑不同截面形状的圆柱体,我们证明了任意维欧几里德空间中两个平行超平面之间的防滑台球即使在平行于板的恒定力作用下也总是有界的;对于一般圆柱体,当横向系统的轨道(这个概念取决于将运动分解为横向和纵向分量)的周期为2时——这在平面防滑台球中很常见——在没有力的情况下,纵向运动通常是无界的。这是用一个纵向线性漂移的公式来表示的,我们在任意维度上证明了这个公式。虽然我们可以证明有界轨道存在的系统具有相对简单的横向动力学,但我们也简要地探讨了一个无滑移台球系统,即体育场圆柱台球,它可以表现出混沌的横向动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rolling and no-slip bouncing in cylinders
The purpose of this paper is to compare a classical non-holonomic system---a sphere rolling against the inner surface of a vertical cylinder under gravity---and a class of discrete dynamical systems known as no-slip billiards in similar configurations. A well-known notable feature of the non-holonomic system is that the rolling sphere does not fall; its height function is bounded and oscillates harmonically up and down. The central issue of the present work is whether similar bounded behavior can be observed in the no-slip billiard counterpart. Our main results are as follows: for circular cylinders in dimension $3$, the no-slip billiard has the bounded orbits property, and very closely approximates rolling motion, for a class of initial conditions which we call transversal rolling impact. When this condition does not hold, trajectories undergo vertical oscillations superimposed to an overall downward acceleration. Considering cylinders with different cross-section shapes, we show that no-slip billiards between two parallel hyperplanes in Euclidean space of arbitrary dimension are always bounded even under a constant force parallel to the plates; for general cylinders, when the orbit of the transverse system (a concept that depends on a factorization of the motion into transversal and longitudinal components) has period two---a very common occurrence in planar no-slip billiards---the motion in the longitudinal direction, under no forces, is generically not bounded. This is shown using a formula for a longitudinal linear drift that we prove in arbitrary dimensions. While the systems for which we can prove the existence of bounded orbits have relatively simple transverse dynamics, we also briefly explore numerically a no-slip billiard system, namely the stadium cylinder billiard, that can exhibit chaotic transversal dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
期刊最新文献
A multi-parameter family of metrics on stiefel manifolds and applications The dressing field method in gauge theories - geometric approach Lagrangian–Hamiltonian formalism for cocontact systems A family of special case sequential warped-product manifolds A Herglotz-based integrator for nonholonomic mechanical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1