{"title":"平滑和聚类引导图像脱色","authors":"Fang Li, Yuanming Zhu","doi":"10.5566/IAS.2348","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new image decolorization method based on image clustering and weight optimization. First, we smooth the color image and cluster it into several classes and get the class centers. Each center can represent a distinctive color in the image. Then the class centers are sorted according to their brightness measured by Euclidean norm. By assuming that the decolorized grayscale image is a linear combination of the three channels of the color image, we propose an optimization problem by forcing the sorted class centers to correspond to specified grayscale values satisfying uniform distribution. Numerically, the problem is solved by quadratic programming. Experiments on two popular data sets demonstrate that the proposed method is competitive with the state-of-the-art decolorization method.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"49 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Smoothing and Clustering Guided Image Decolorization\",\"authors\":\"Fang Li, Yuanming Zhu\",\"doi\":\"10.5566/IAS.2348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new image decolorization method based on image clustering and weight optimization. First, we smooth the color image and cluster it into several classes and get the class centers. Each center can represent a distinctive color in the image. Then the class centers are sorted according to their brightness measured by Euclidean norm. By assuming that the decolorized grayscale image is a linear combination of the three channels of the color image, we propose an optimization problem by forcing the sorted class centers to correspond to specified grayscale values satisfying uniform distribution. Numerically, the problem is solved by quadratic programming. Experiments on two popular data sets demonstrate that the proposed method is competitive with the state-of-the-art decolorization method.\",\"PeriodicalId\":49062,\"journal\":{\"name\":\"Image Analysis & Stereology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Analysis & Stereology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5566/IAS.2348\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.2348","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Smoothing and Clustering Guided Image Decolorization
In this paper, we propose a new image decolorization method based on image clustering and weight optimization. First, we smooth the color image and cluster it into several classes and get the class centers. Each center can represent a distinctive color in the image. Then the class centers are sorted according to their brightness measured by Euclidean norm. By assuming that the decolorized grayscale image is a linear combination of the three channels of the color image, we propose an optimization problem by forcing the sorted class centers to correspond to specified grayscale values satisfying uniform distribution. Numerically, the problem is solved by quadratic programming. Experiments on two popular data sets demonstrate that the proposed method is competitive with the state-of-the-art decolorization method.
期刊介绍:
Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.