初始面内载荷对复合材料夹层板低速冲击响应的影响:一种新的系统迭代分析方法

K. M. Fard, A. Azarnia
{"title":"初始面内载荷对复合材料夹层板低速冲击响应的影响:一种新的系统迭代分析方法","authors":"K. M. Fard, A. Azarnia","doi":"10.22034/JSM.2019.573380.1320","DOIUrl":null,"url":null,"abstract":"A new systematic iterative analytical procedure is presented to predict the dynamic response of composite sandwich plates subjected to low-velocity impact phenomenon with/without initial in-plane forces. In this method, the interaction between indenter and sandwich panel is modeled with considering the exponential equation similar to the Hertzian contact law and using the principle of minimum potential energy and the energy-balance model. In accordance with the mentioned procedure and considering initial in-plane forces, the unknown coefficients of the exponential equation are obtained analytically. Accordingly, the traditional Hertzian contact law is modified for use in the composite sandwich panel with the flexible core under biaxial pre-stresses. The maximum contact force using the two-degrees-of-freedom (2DOF) spring-mass model is calculated through an iterative systematic analytical process. Using the present method, in addition to reducing the runtime, the problem-solving process is carried out with appropriate convergence. The numerical results of the analysis are compared with the published experimental and theoretical results. The effects of some important geometrical and physical parameters on contact force history are examined in details.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"5 1","pages":"521-538"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Initial In-Plane Loads on the Response of Composite-Sandwich Plates Subjected to Low Velocity Impact: Using a New Systematic Iterative Analytical Process\",\"authors\":\"K. M. Fard, A. Azarnia\",\"doi\":\"10.22034/JSM.2019.573380.1320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new systematic iterative analytical procedure is presented to predict the dynamic response of composite sandwich plates subjected to low-velocity impact phenomenon with/without initial in-plane forces. In this method, the interaction between indenter and sandwich panel is modeled with considering the exponential equation similar to the Hertzian contact law and using the principle of minimum potential energy and the energy-balance model. In accordance with the mentioned procedure and considering initial in-plane forces, the unknown coefficients of the exponential equation are obtained analytically. Accordingly, the traditional Hertzian contact law is modified for use in the composite sandwich panel with the flexible core under biaxial pre-stresses. The maximum contact force using the two-degrees-of-freedom (2DOF) spring-mass model is calculated through an iterative systematic analytical process. Using the present method, in addition to reducing the runtime, the problem-solving process is carried out with appropriate convergence. The numerical results of the analysis are compared with the published experimental and theoretical results. The effects of some important geometrical and physical parameters on contact force history are examined in details.\",\"PeriodicalId\":17126,\"journal\":{\"name\":\"Journal of Solid Mechanics and Materials Engineering\",\"volume\":\"5 1\",\"pages\":\"521-538\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid Mechanics and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/JSM.2019.573380.1320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2019.573380.1320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的系统迭代分析方法,用于预测复合材料夹层板在有/无初始面内力的低速冲击下的动力响应。该方法采用类似赫兹接触定律的指数方程,利用最小势能原理和能量平衡模型,对压头与夹芯板的相互作用进行建模。根据上述步骤,并考虑初始面内力,解析得到了指数方程的未知系数。据此,对传统的赫兹接触定律进行了修正,适用于双轴预应力下的柔性芯夹芯复合材料板。利用二自由度弹簧-质量模型,通过迭代系统解析过程计算出了最大接触力。使用该方法,除了减少运行时间外,求解过程具有适当的收敛性。数值分析结果与已发表的实验和理论结果进行了比较。详细分析了一些重要的几何和物理参数对接触力历史的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effects of Initial In-Plane Loads on the Response of Composite-Sandwich Plates Subjected to Low Velocity Impact: Using a New Systematic Iterative Analytical Process
A new systematic iterative analytical procedure is presented to predict the dynamic response of composite sandwich plates subjected to low-velocity impact phenomenon with/without initial in-plane forces. In this method, the interaction between indenter and sandwich panel is modeled with considering the exponential equation similar to the Hertzian contact law and using the principle of minimum potential energy and the energy-balance model. In accordance with the mentioned procedure and considering initial in-plane forces, the unknown coefficients of the exponential equation are obtained analytically. Accordingly, the traditional Hertzian contact law is modified for use in the composite sandwich panel with the flexible core under biaxial pre-stresses. The maximum contact force using the two-degrees-of-freedom (2DOF) spring-mass model is calculated through an iterative systematic analytical process. Using the present method, in addition to reducing the runtime, the problem-solving process is carried out with appropriate convergence. The numerical results of the analysis are compared with the published experimental and theoretical results. The effects of some important geometrical and physical parameters on contact force history are examined in details.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dispersion of SH-Wave in a Heterogeneous Orthotropic Layer Sandwiched Between an Inhomogeneous Semi-Infinite Medium and a Heterogeneous Elastic Half-Space Large Deformation Hermitian Finite Element Coupled Thermoelasticity Analysis of Wave Propagation and Reflection in a Finite Domain Free Torsional Vibration Analysis of Hollow and Solid Non-Uniform Rotating Shafts Using Distributed and Lumped Modeling Technique Multi-Objective Optimization of Shot-Peening Parameters Using Modified Taguchi Technique Study on Vibration Band Gap Characteristics of a Branched Shape Periodic Structure Using the GDQR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1