用于特征聚类和降维的模糊特征相似函数

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Pub Date : 2021-04-05 DOI:10.1145/3460620.3460758
Arun Nagaraja, U. Boregowda, V. Radhakrishna
{"title":"用于特征聚类和降维的模糊特征相似函数","authors":"Arun Nagaraja, U. Boregowda, V. Radhakrishna","doi":"10.1145/3460620.3460758","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction is usually obtained by applying some of the most well unknown methods such as principal component analysis, singular value decomposition, feature selection algorithms which are based on information gain, Gini index etc. The objective behind achievement of dimensionality reduction is reducing computational complexity and at the same time aiming to attain better performance by learning algorithms which may perform supervised or unsupervised learning. In this paper, we present a feature clustering similarity function for dimensionality reduction so that the eventual reduced dataset may be used to reduce the computational complexity and also result better classifier evaluation results interms of accuracy, precision etc.","PeriodicalId":36824,"journal":{"name":"Data","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fuzzy Feature Similarity Functions for Feature Clustering and Dimensionality Reduction\",\"authors\":\"Arun Nagaraja, U. Boregowda, V. Radhakrishna\",\"doi\":\"10.1145/3460620.3460758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dimensionality reduction is usually obtained by applying some of the most well unknown methods such as principal component analysis, singular value decomposition, feature selection algorithms which are based on information gain, Gini index etc. The objective behind achievement of dimensionality reduction is reducing computational complexity and at the same time aiming to attain better performance by learning algorithms which may perform supervised or unsupervised learning. In this paper, we present a feature clustering similarity function for dimensionality reduction so that the eventual reduced dataset may be used to reduce the computational complexity and also result better classifier evaluation results interms of accuracy, precision etc.\",\"PeriodicalId\":36824,\"journal\":{\"name\":\"Data\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1145/3460620.3460758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1145/3460620.3460758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

降维通常通过应用一些最不为人知的方法来实现,如主成分分析、奇异值分解、基于信息增益的特征选择算法、基尼指数等。实现降维的目的是降低计算复杂度,同时通过学习算法来获得更好的性能,这些算法可以执行监督学习或无监督学习。在本文中,我们提出了一个特征聚类相似函数用于降维,以便最终的降维数据集可以用于降低计算复杂度,并得到更好的分类器评估结果,包括准确性,精密度等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy Feature Similarity Functions for Feature Clustering and Dimensionality Reduction
Dimensionality reduction is usually obtained by applying some of the most well unknown methods such as principal component analysis, singular value decomposition, feature selection algorithms which are based on information gain, Gini index etc. The objective behind achievement of dimensionality reduction is reducing computational complexity and at the same time aiming to attain better performance by learning algorithms which may perform supervised or unsupervised learning. In this paper, we present a feature clustering similarity function for dimensionality reduction so that the eventual reduced dataset may be used to reduce the computational complexity and also result better classifier evaluation results interms of accuracy, precision etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
期刊最新文献
Medical Opinions Analysis about the Decrease of Autopsies Using Emerging Pattern Mining Unlocking Insights: Analysing COVID-19 Lockdown Policies and Mobility Data in Victoria, Australia, through a Data-Driven Machine Learning Approach Expert-Annotated Dataset to Study Cyberbullying in Polish Language Genome Sequence of the Plant-Growth-Promoting Endophyte Curtobacterium flaccumfaciens Strain W004 A Qualitative Dataset for Coffee Bio-Aggressors Detection Based on the Ancestral Knowledge of the Cauca Coffee Farmers in Colombia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1