作为NK-2受体拮抗剂的肽的QSAR研究的化学计量学方法

Sergio Clementi ∗ , Gabriele Cruciani , Daniela Riganelli , Paolo Rovero ∗ , Vittorio Pestellini , Carlo Alberto Maggi , Massimo Baroni
{"title":"作为NK-2受体拮抗剂的肽的QSAR研究的化学计量学方法","authors":"Sergio Clementi ∗ ,&nbsp;Gabriele Cruciani ,&nbsp;Daniela Riganelli ,&nbsp;Paolo Rovero ∗ ,&nbsp;Vittorio Pestellini ,&nbsp;Carlo Alberto Maggi ,&nbsp;Massimo Baroni","doi":"10.1016/0898-5529(90)90065-G","DOIUrl":null,"url":null,"abstract":"<div><p>This paper shows the advantages of using chemometric strategies in QSAR of NKA analogues containing D-Tryptophan and behaving as highly selective NK-2 receptor antagonists: a) detecting the sequence with optimal antagonist activity, and b) having a strategy for selecting a few most informative sequences. The data set is included on disk as RVD .DAT.</p></div>","PeriodicalId":101214,"journal":{"name":"Tetrahedron Computer Methodology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0898-5529(90)90065-G","citationCount":"7","resultStr":"{\"title\":\"Chemometric approach to a QSAR study of peptides behaving as NK-2 receptor antagonists\",\"authors\":\"Sergio Clementi ∗ ,&nbsp;Gabriele Cruciani ,&nbsp;Daniela Riganelli ,&nbsp;Paolo Rovero ∗ ,&nbsp;Vittorio Pestellini ,&nbsp;Carlo Alberto Maggi ,&nbsp;Massimo Baroni\",\"doi\":\"10.1016/0898-5529(90)90065-G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper shows the advantages of using chemometric strategies in QSAR of NKA analogues containing D-Tryptophan and behaving as highly selective NK-2 receptor antagonists: a) detecting the sequence with optimal antagonist activity, and b) having a strategy for selecting a few most informative sequences. The data set is included on disk as RVD .DAT.</p></div>\",\"PeriodicalId\":101214,\"journal\":{\"name\":\"Tetrahedron Computer Methodology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0898-5529(90)90065-G\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tetrahedron Computer Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/089855299090065G\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron Computer Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/089855299090065G","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文展示了在含有d -色氨酸的NKA类似物的QSAR中使用化学计量学策略作为高选择性NK-2受体拮抗剂的优势:a)检测具有最佳拮抗剂活性的序列,b)选择一些最具信息量的序列的策略。数据集以RVD . dat的形式包含在磁盘上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemometric approach to a QSAR study of peptides behaving as NK-2 receptor antagonists

This paper shows the advantages of using chemometric strategies in QSAR of NKA analogues containing D-Tryptophan and behaving as highly selective NK-2 receptor antagonists: a) detecting the sequence with optimal antagonist activity, and b) having a strategy for selecting a few most informative sequences. The data set is included on disk as RVD .DAT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contributors to this issue Introduction Contributors to this issue Errata Contributors to this issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1