云计算环境下的网络安全分析

Linjiang Xie, Feilu Hang, W. Guo, Zhenhong Zhang, Hanruo Li
{"title":"云计算环境下的网络安全分析","authors":"Linjiang Xie, Feilu Hang, W. Guo, Zhenhong Zhang, Hanruo Li","doi":"10.1142/s1793962322500544","DOIUrl":null,"url":null,"abstract":"Information technology services for businesses and consumers can be delivered via the Internet using cloud computing (CC) because it is agile, cost-effective, and time-tested. For many real-world applications, the data are kept in the cloud by a third-party service and accessible through the Internet as needed through CC approaches. Risks associated with CC involve the data security and network security account for real-time systems. This paper discusses different security threats in CC and suggests a solution by designing a network security analysis scheme with machine learning (NSA-ML). The ML classifier predicts the network vulnerabilities and prevents insecure communication in a CC environment. The proposed NSA-ML presents a data authentication scheme with a novel encryption methodology to ensure data security. The experimental results show that the proposed NSA-ML outperforms the existing cloud security approaches by gaining an efficiency of 95.4%.","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"64 1","pages":"2250054:1-2250054:20"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Network security analysis for cloud computing environment\",\"authors\":\"Linjiang Xie, Feilu Hang, W. Guo, Zhenhong Zhang, Hanruo Li\",\"doi\":\"10.1142/s1793962322500544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information technology services for businesses and consumers can be delivered via the Internet using cloud computing (CC) because it is agile, cost-effective, and time-tested. For many real-world applications, the data are kept in the cloud by a third-party service and accessible through the Internet as needed through CC approaches. Risks associated with CC involve the data security and network security account for real-time systems. This paper discusses different security threats in CC and suggests a solution by designing a network security analysis scheme with machine learning (NSA-ML). The ML classifier predicts the network vulnerabilities and prevents insecure communication in a CC environment. The proposed NSA-ML presents a data authentication scheme with a novel encryption methodology to ensure data security. The experimental results show that the proposed NSA-ML outperforms the existing cloud security approaches by gaining an efficiency of 95.4%.\",\"PeriodicalId\":13657,\"journal\":{\"name\":\"Int. J. Model. Simul. Sci. Comput.\",\"volume\":\"64 1\",\"pages\":\"2250054:1-2250054:20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Model. Simul. Sci. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793962322500544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Model. Simul. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793962322500544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

面向企业和消费者的信息技术服务可以通过使用云计算(CC)的互联网交付,因为它是敏捷的、具有成本效益的,并且经过了时间的考验。对于许多现实世界的应用程序,数据由第三方服务保存在云中,并根据需要通过Internet通过CC方法进行访问。与CC相关的风险涉及实时系统的数据安全和网络安全帐户。本文讨论了CC中的各种安全威胁,并通过设计一种基于机器学习的网络安全分析方案(NSA-ML)提出了解决方案。ML分类器预测网络漏洞,防止CC环境中的不安全通信。提出的NSA-ML提出了一种具有新颖加密方法的数据认证方案,以确保数据安全。实验结果表明,本文提出的NSA-ML方法的效率达到95.4%,优于现有的云安全方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network security analysis for cloud computing environment
Information technology services for businesses and consumers can be delivered via the Internet using cloud computing (CC) because it is agile, cost-effective, and time-tested. For many real-world applications, the data are kept in the cloud by a third-party service and accessible through the Internet as needed through CC approaches. Risks associated with CC involve the data security and network security account for real-time systems. This paper discusses different security threats in CC and suggests a solution by designing a network security analysis scheme with machine learning (NSA-ML). The ML classifier predicts the network vulnerabilities and prevents insecure communication in a CC environment. The proposed NSA-ML presents a data authentication scheme with a novel encryption methodology to ensure data security. The experimental results show that the proposed NSA-ML outperforms the existing cloud security approaches by gaining an efficiency of 95.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of the drift and diffusion of marine oil spill under the effect of wind, current and tides Detection and recognition of dim and small targets in sea clutter background based on polarization decomposition Intelligent generation of combat simulation scenarios based on UML diagram recognition Visualization of relevant parameter dependencies in a delay SEIQ epidemic model - A live script program for didactic and interactive demonstrations A study on shipowner's behavior intention to cross dam by integrating SEM-SD model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1