{"title":"无冲突复制数据类型的抽象","authors":"Hongjin Liang, Xinyu Feng","doi":"10.1145/3453483.3454067","DOIUrl":null,"url":null,"abstract":"Strong eventual consistency (SEC) has been used as a classic notion of correctness for Conflict-Free Replicated Data Types (CRDTs). However, it does not give proper abstractions of functionality, thus is not helpful for modular verification of client programs using CRDTs. We propose a new correctness formulation for CRDTs, called Abstract Converging Consistency (ACC), to specify both data consistency and functional correctness. ACC gives abstract atomic specifications (as an abstraction) to CRDT operations, and establishes consistency between the concrete execution traces and the execution using the abstract atomic operations. The abstraction allows us to verify the CRDT implementation and its client programs separately, resulting in more modular and elegant proofs than monolithic approaches for whole program verification. We give a generic proof method to verify ACC of CRDT implementations, and a rely-guarantee style program logic to verify client programs. Our Abstraction theorem shows that ACC is equivalent to contextual refinement, linking the verification of CRDT implementations and clients together to derive functional correctness of whole programs.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Abstraction for conflict-free replicated data types\",\"authors\":\"Hongjin Liang, Xinyu Feng\",\"doi\":\"10.1145/3453483.3454067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strong eventual consistency (SEC) has been used as a classic notion of correctness for Conflict-Free Replicated Data Types (CRDTs). However, it does not give proper abstractions of functionality, thus is not helpful for modular verification of client programs using CRDTs. We propose a new correctness formulation for CRDTs, called Abstract Converging Consistency (ACC), to specify both data consistency and functional correctness. ACC gives abstract atomic specifications (as an abstraction) to CRDT operations, and establishes consistency between the concrete execution traces and the execution using the abstract atomic operations. The abstraction allows us to verify the CRDT implementation and its client programs separately, resulting in more modular and elegant proofs than monolithic approaches for whole program verification. We give a generic proof method to verify ACC of CRDT implementations, and a rely-guarantee style program logic to verify client programs. Our Abstraction theorem shows that ACC is equivalent to contextual refinement, linking the verification of CRDT implementations and clients together to derive functional correctness of whole programs.\",\"PeriodicalId\":20557,\"journal\":{\"name\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453483.3454067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

强最终一致性(SEC)已被用作无冲突复制数据类型(crdt)正确性的经典概念。然而,它没有给出适当的功能抽象,因此对使用crdt的客户端程序的模块化验证没有帮助。我们提出了一种新的crdt正确性公式,称为抽象收敛一致性(ACC),以指定数据一致性和功能正确性。ACC为CRDT操作提供了抽象原子规范(作为抽象),并在具体执行跟踪和使用抽象原子操作的执行之间建立一致性。抽象允许我们分别验证CRDT实现和它的客户端程序,从而产生比整个程序验证的单一方法更模块化和优雅的证明。给出了一种通用的证明方法来验证CRDT实现的ACC,并给出了一种可靠保证式的程序逻辑来验证客户端程序。我们的抽象定理表明,ACC相当于上下文细化,将CRDT实现和客户端的验证联系在一起,从而得出整个程序的功能正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abstraction for conflict-free replicated data types
Strong eventual consistency (SEC) has been used as a classic notion of correctness for Conflict-Free Replicated Data Types (CRDTs). However, it does not give proper abstractions of functionality, thus is not helpful for modular verification of client programs using CRDTs. We propose a new correctness formulation for CRDTs, called Abstract Converging Consistency (ACC), to specify both data consistency and functional correctness. ACC gives abstract atomic specifications (as an abstraction) to CRDT operations, and establishes consistency between the concrete execution traces and the execution using the abstract atomic operations. The abstraction allows us to verify the CRDT implementation and its client programs separately, resulting in more modular and elegant proofs than monolithic approaches for whole program verification. We give a generic proof method to verify ACC of CRDT implementations, and a rely-guarantee style program logic to verify client programs. Our Abstraction theorem shows that ACC is equivalent to contextual refinement, linking the verification of CRDT implementations and clients together to derive functional correctness of whole programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning to find naming issues with big code and small supervision Cyclic program synthesis Fluid: a framework for approximate concurrency via controlled dependency relaxation Bliss: auto-tuning complex applications using a pool of diverse lightweight learning models Phased synthesis of divide and conquer programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1