多粒度组交互预测

Taiping Yao, Minsi Wang, Bingbing Ni, Huawei Wei, Xiaokang Yang
{"title":"多粒度组交互预测","authors":"Taiping Yao, Minsi Wang, Bingbing Ni, Huawei Wei, Xiaokang Yang","doi":"10.1109/CVPR.2018.00239","DOIUrl":null,"url":null,"abstract":"Most human activity analysis works (i.e., recognition or prediction) only focus on a single granularity, i.e., either modelling global motion based on the coarse level movement such as human trajectories or forecasting future detailed action based on body parts' movement such as skeleton motion. In contrast, in this work, we propose a multi-granularity interaction prediction network which integrates both global motion and detailed local action. Built on a bidirectional LSTM network, the proposed method possesses between granularities links which encourage feature sharing as well as cross-feature consistency between both global and local granularity (e.g., trajectory or local action), and in turn predict long-term global location and local dynamics of each individual. We validate our method on several public datasets with promising performance.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"8 1","pages":"2246-2254"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Multiple Granularity Group Interaction Prediction\",\"authors\":\"Taiping Yao, Minsi Wang, Bingbing Ni, Huawei Wei, Xiaokang Yang\",\"doi\":\"10.1109/CVPR.2018.00239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most human activity analysis works (i.e., recognition or prediction) only focus on a single granularity, i.e., either modelling global motion based on the coarse level movement such as human trajectories or forecasting future detailed action based on body parts' movement such as skeleton motion. In contrast, in this work, we propose a multi-granularity interaction prediction network which integrates both global motion and detailed local action. Built on a bidirectional LSTM network, the proposed method possesses between granularities links which encourage feature sharing as well as cross-feature consistency between both global and local granularity (e.g., trajectory or local action), and in turn predict long-term global location and local dynamics of each individual. We validate our method on several public datasets with promising performance.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"8 1\",\"pages\":\"2246-2254\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

大多数人类活动分析工作(即识别或预测)只关注单个粒度,即要么基于粗水平运动(如人类轨迹)建模全局运动,要么基于身体部位运动(如骨骼运动)预测未来的详细动作。相比之下,在这项工作中,我们提出了一种集成了全局运动和详细局部动作的多粒度交互预测网络。该方法建立在双向LSTM网络上,具有粒度之间的链接,鼓励全局和局部粒度(例如轨迹或局部动作)之间的特征共享以及跨特征一致性,进而预测每个个体的长期全局位置和局部动态。我们在几个公共数据集上验证了我们的方法,并取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Granularity Group Interaction Prediction
Most human activity analysis works (i.e., recognition or prediction) only focus on a single granularity, i.e., either modelling global motion based on the coarse level movement such as human trajectories or forecasting future detailed action based on body parts' movement such as skeleton motion. In contrast, in this work, we propose a multi-granularity interaction prediction network which integrates both global motion and detailed local action. Built on a bidirectional LSTM network, the proposed method possesses between granularities links which encourage feature sharing as well as cross-feature consistency between both global and local granularity (e.g., trajectory or local action), and in turn predict long-term global location and local dynamics of each individual. We validate our method on several public datasets with promising performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multistage Adversarial Losses for Pose-Based Human Image Synthesis Document Enhancement Using Visibility Detection Demo2Vec: Reasoning Object Affordances from Online Videos Planar Shape Detection at Structural Scales Where and Why are They Looking? Jointly Inferring Human Attention and Intentions in Complex Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1