A. Hackmann, O. Kanert, H. Kolem, B. Michel, B. Gunther
{"title":"核磁共振研究固体Au:xCu合金中铜的原子运动","authors":"A. Hackmann, O. Kanert, H. Kolem, B. Michel, B. Gunther","doi":"10.1088/0305-4608/18/9/013","DOIUrl":null,"url":null,"abstract":"The atomic diffusion of Cu in solid Au:xCu alloys (x=5.7, 8.2, 9.1, 10.4, 13.2, 17.3 at.%) has been studied by means of solute (63Cu) nuclear spin relaxation (NSR) experiments in the rotating frame (T1p) between ambient temperature and 1100 K. Surprisingly, two distinct diffusion-induced maxima in the relaxation rate could be observed. The high-temperature mechanism around 950 K corresponds to the translational diffusion of Cu in the solid solution phase, as is suggested by comparison with tracer diffusion data. The second relaxation mechanism occurs at fairly low temperatures ( approximately=700 K) with a maximum intensity around 8 at.% Cu. The origin of this contribution to the diffusional NSR rate is not quite clear. The authors attribute it to a short-range ordering effect of Cu atoms in the Au matrix. The activation enthalpies of both types of atomic motion depend only slightly on the Cu concentration.","PeriodicalId":16828,"journal":{"name":"Journal of Physics F: Metal Physics","volume":"11 1","pages":"1927-1932"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Atomic motion of copper in solid Au:xCu alloys studied by nuclear magnetic resonance\",\"authors\":\"A. Hackmann, O. Kanert, H. Kolem, B. Michel, B. Gunther\",\"doi\":\"10.1088/0305-4608/18/9/013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The atomic diffusion of Cu in solid Au:xCu alloys (x=5.7, 8.2, 9.1, 10.4, 13.2, 17.3 at.%) has been studied by means of solute (63Cu) nuclear spin relaxation (NSR) experiments in the rotating frame (T1p) between ambient temperature and 1100 K. Surprisingly, two distinct diffusion-induced maxima in the relaxation rate could be observed. The high-temperature mechanism around 950 K corresponds to the translational diffusion of Cu in the solid solution phase, as is suggested by comparison with tracer diffusion data. The second relaxation mechanism occurs at fairly low temperatures ( approximately=700 K) with a maximum intensity around 8 at.% Cu. The origin of this contribution to the diffusional NSR rate is not quite clear. The authors attribute it to a short-range ordering effect of Cu atoms in the Au matrix. The activation enthalpies of both types of atomic motion depend only slightly on the Cu concentration.\",\"PeriodicalId\":16828,\"journal\":{\"name\":\"Journal of Physics F: Metal Physics\",\"volume\":\"11 1\",\"pages\":\"1927-1932\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics F: Metal Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0305-4608/18/9/013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics F: Metal Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0305-4608/18/9/013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Atomic motion of copper in solid Au:xCu alloys studied by nuclear magnetic resonance
The atomic diffusion of Cu in solid Au:xCu alloys (x=5.7, 8.2, 9.1, 10.4, 13.2, 17.3 at.%) has been studied by means of solute (63Cu) nuclear spin relaxation (NSR) experiments in the rotating frame (T1p) between ambient temperature and 1100 K. Surprisingly, two distinct diffusion-induced maxima in the relaxation rate could be observed. The high-temperature mechanism around 950 K corresponds to the translational diffusion of Cu in the solid solution phase, as is suggested by comparison with tracer diffusion data. The second relaxation mechanism occurs at fairly low temperatures ( approximately=700 K) with a maximum intensity around 8 at.% Cu. The origin of this contribution to the diffusional NSR rate is not quite clear. The authors attribute it to a short-range ordering effect of Cu atoms in the Au matrix. The activation enthalpies of both types of atomic motion depend only slightly on the Cu concentration.