由分数非线性材料制成的充满液体的环形通道壁上的纵波

L. Mogilevich, E. Popova
{"title":"由分数非线性材料制成的充满液体的环形通道壁上的纵波","authors":"L. Mogilevich, E. Popova","doi":"10.18500/0869-6632-003040","DOIUrl":null,"url":null,"abstract":"Purpose of this paper is to study the evolution of longitudinal strain waves in the walls of an annular channel filled with a viscous incompressible fluid. The walls of the channel were represented as coaxial shells with fractional physical nonlinearity. The viscosity of the fluid and its influence on the wave process was taken into account within the study. Metods. The system of two evolutionary equations, which are generalized Schamel equations, was obtained by the two-scale asymptotic expansion method. The fractional nonlinearity of the channel wall material leads to the necessity to use a computational experiment to study the wave dynamics in them. The computational experiment was conducted based on obtaining new difference schemes for the governing equations. These schemes are analogous to the Crank–Nicholson scheme for modeling heat propagation. Results. Numerical simulation showed that over time, the velocity and amplitude of the deformation waves remain unchanged, and the wave propagation direction concurs with the positive direction of the longitudinal axis. The latter specifies that the velocity of the waves is supersonic. For a particular case, the coincidence of the computational experiment with the exact solution is shown. This substantiates the adequacy of the proposed difference scheme for the generalized Schamel equations. In addition, it was shown that solitary deformation waves in the channel walls are solitons.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Longitudinal waves in the walls of an annular channel filled with liquid and made of a material with fractional nonlinearity\",\"authors\":\"L. Mogilevich, E. Popova\",\"doi\":\"10.18500/0869-6632-003040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose of this paper is to study the evolution of longitudinal strain waves in the walls of an annular channel filled with a viscous incompressible fluid. The walls of the channel were represented as coaxial shells with fractional physical nonlinearity. The viscosity of the fluid and its influence on the wave process was taken into account within the study. Metods. The system of two evolutionary equations, which are generalized Schamel equations, was obtained by the two-scale asymptotic expansion method. The fractional nonlinearity of the channel wall material leads to the necessity to use a computational experiment to study the wave dynamics in them. The computational experiment was conducted based on obtaining new difference schemes for the governing equations. These schemes are analogous to the Crank–Nicholson scheme for modeling heat propagation. Results. Numerical simulation showed that over time, the velocity and amplitude of the deformation waves remain unchanged, and the wave propagation direction concurs with the positive direction of the longitudinal axis. The latter specifies that the velocity of the waves is supersonic. For a particular case, the coincidence of the computational experiment with the exact solution is shown. This substantiates the adequacy of the proposed difference scheme for the generalized Schamel equations. In addition, it was shown that solitary deformation waves in the channel walls are solitons.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-003040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是研究充满粘性不可压缩流体的环形通道壁面纵向应变波的演化。通道的壁被表示为具有分数物理非线性的同轴壳。研究中考虑了流体的黏度及其对波动过程的影响。看法。用二尺度渐近展开法得到了两个演化方程的系统,这两个演化方程是广义Schamel方程。由于沟道壁材料的分数非线性,需要用计算实验来研究沟道壁中的波动动力学。在得到新的控制方程差分格式的基础上进行了计算实验。这些格式类似于模拟热传播的Crank-Nicholson格式。结果。数值模拟结果表明,随着时间的推移,变形波的速度和振幅保持不变,波的传播方向与纵轴正方向一致。后者规定波的速度是超音速的。对于一个特殊的例子,计算实验与精确解是一致的。这证实了所提出的差分格式对于广义Schamel方程的充分性。此外,还证明了通道壁上的孤立变形波是孤子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Longitudinal waves in the walls of an annular channel filled with liquid and made of a material with fractional nonlinearity
Purpose of this paper is to study the evolution of longitudinal strain waves in the walls of an annular channel filled with a viscous incompressible fluid. The walls of the channel were represented as coaxial shells with fractional physical nonlinearity. The viscosity of the fluid and its influence on the wave process was taken into account within the study. Metods. The system of two evolutionary equations, which are generalized Schamel equations, was obtained by the two-scale asymptotic expansion method. The fractional nonlinearity of the channel wall material leads to the necessity to use a computational experiment to study the wave dynamics in them. The computational experiment was conducted based on obtaining new difference schemes for the governing equations. These schemes are analogous to the Crank–Nicholson scheme for modeling heat propagation. Results. Numerical simulation showed that over time, the velocity and amplitude of the deformation waves remain unchanged, and the wave propagation direction concurs with the positive direction of the longitudinal axis. The latter specifies that the velocity of the waves is supersonic. For a particular case, the coincidence of the computational experiment with the exact solution is shown. This substantiates the adequacy of the proposed difference scheme for the generalized Schamel equations. In addition, it was shown that solitary deformation waves in the channel walls are solitons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
47
期刊介绍: Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.
期刊最新文献
80 years of Vladislav A. Tsarev 70 years of Sergey V. Gonchenko 40 years of Ilya V. Sysoev To the 85th anniversary of Dmitry Ivanovich Trubetskov On the anniversary of Sergei A. Kashchenko
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1