二元分布的拟合检验

R. C. Dahiya, J. Gurland
{"title":"二元分布的拟合检验","authors":"R. C. Dahiya, J. Gurland","doi":"10.1111/J.2517-6161.1973.TB00973.X","DOIUrl":null,"url":null,"abstract":"Abstract : Tests of fit based on generalized minimum chi-square techniques are developed for bivariate distributions. The asymptotic null distribution of the test statistic is chi square while the asymptotic non-null distribution turns out to be that of a weighted sum of independent non-central chi square variates. The special case of testing the fit of a bivariate normal distribution is investigated in detail and the power is obtained for several alternative families of bivariate distributions. (Author)","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"127 1","pages":"452-465"},"PeriodicalIF":0.0000,"publicationDate":"1973-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Test of Fit for Bivariate Distributions\",\"authors\":\"R. C. Dahiya, J. Gurland\",\"doi\":\"10.1111/J.2517-6161.1973.TB00973.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract : Tests of fit based on generalized minimum chi-square techniques are developed for bivariate distributions. The asymptotic null distribution of the test statistic is chi square while the asymptotic non-null distribution turns out to be that of a weighted sum of independent non-central chi square variates. The special case of testing the fit of a bivariate normal distribution is investigated in detail and the power is obtained for several alternative families of bivariate distributions. (Author)\",\"PeriodicalId\":17425,\"journal\":{\"name\":\"Journal of the royal statistical society series b-methodological\",\"volume\":\"127 1\",\"pages\":\"452-465\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1973-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the royal statistical society series b-methodological\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/J.2517-6161.1973.TB00973.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1973.TB00973.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

摘要:提出了基于广义最小卡方技术的二元分布拟合检验方法。检验统计量的渐近零分布是卡方分布,而渐近非零分布是独立的非中心卡方变量的加权和。详细研究了二元正态分布拟合检验的特殊情况,并给出了几种二元分布的幂次。(作者)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Test of Fit for Bivariate Distributions
Abstract : Tests of fit based on generalized minimum chi-square techniques are developed for bivariate distributions. The asymptotic null distribution of the test statistic is chi square while the asymptotic non-null distribution turns out to be that of a weighted sum of independent non-central chi square variates. The special case of testing the fit of a bivariate normal distribution is investigated in detail and the power is obtained for several alternative families of bivariate distributions. (Author)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposal of the vote of thanks in discussion of Cule, M., Samworth, R., and Stewart, M.: Maximum likelihood estimation of a multidimensional logconcave density On Assessing goodness of fit of generalized linear models to sparse data Bayes Linear Sufficiency and Systems of Expert Posterior Assessments On the Choice of Smoothing Parameter, Threshold and Truncation in Nonparametric Regression by Non-linear Wavelet Methods Quasi‐Likelihood and Generalizing the Em Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1