Weiguang Zhai, Changchun Li, Qian Cheng, Fan Ding, Zhen Chen
{"title":"基于多源特征融合和叠加集成学习的无人机遥感玉米叶绿素含量精确估算","authors":"Weiguang Zhai, Changchun Li, Qian Cheng, Fan Ding, Zhen Chen","doi":"10.3390/rs15133454","DOIUrl":null,"url":null,"abstract":"Crop chlorophyll content measuring plays a vital role in monitoring crop growth and optimizing agricultural inputs such as water and fertilizer. However, traditional methods for measuring chlorophyll content primarily rely on labor-intensive chemical analysis. These methods not only involve destructive sampling but also are time-consuming, often resulting in obtaining monitoring results after the optimal growth period of crops. Unmanned aerial vehicle (UAV) remote sensing technology offers the potential for rapidly acquiring chlorophyll content estimations over large areas. Currently, most studies only utilize single features from UAV data and employ traditional machine learning algorithms to estimate chlorophyll content, while the potential of multisource feature fusion and stacking ensemble learning in chlorophyll content estimation research remains largely unexplored. Therefore, this study collected UAV spectral features, thermal features, structural features, as well as chlorophyll content data during maize jointing, trumpet, and big trumpet stages, creating a multisource feature dataset. Subsequently, chlorophyll content estimation models were built based on four machine learning algorithms, namely, ridge regression (RR), light gradient boosting machine (LightGBM), random forest regression (RFR), and stacking ensemble learning. The research results demonstrate that (1) the multisource feature fusion approach achieves higher estimation accuracy compared to the single-feature method, with R2 ranging from 0.699 to 0.754 and rRMSE ranging from 8.36% to 9.47%; and (2) the stacking ensemble learning outperforms traditional machine learning algorithms in chlorophyll content estimation accuracy, particularly when combined with multisource feature fusion, resulting in the best estimation results. In summary, this study proves the effective improvement in chlorophyll content estimation accuracy through multisource feature fusion and stacking ensemble learning. The combination of these methods provides reliable estimation of chlorophyll content using UAV remote sensing technology and brings new insights to precision agriculture management in this field.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploring Multisource Feature Fusion and Stacking Ensemble Learning for Accurate Estimation of Maize Chlorophyll Content Using Unmanned Aerial Vehicle Remote Sensing\",\"authors\":\"Weiguang Zhai, Changchun Li, Qian Cheng, Fan Ding, Zhen Chen\",\"doi\":\"10.3390/rs15133454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crop chlorophyll content measuring plays a vital role in monitoring crop growth and optimizing agricultural inputs such as water and fertilizer. However, traditional methods for measuring chlorophyll content primarily rely on labor-intensive chemical analysis. These methods not only involve destructive sampling but also are time-consuming, often resulting in obtaining monitoring results after the optimal growth period of crops. Unmanned aerial vehicle (UAV) remote sensing technology offers the potential for rapidly acquiring chlorophyll content estimations over large areas. Currently, most studies only utilize single features from UAV data and employ traditional machine learning algorithms to estimate chlorophyll content, while the potential of multisource feature fusion and stacking ensemble learning in chlorophyll content estimation research remains largely unexplored. Therefore, this study collected UAV spectral features, thermal features, structural features, as well as chlorophyll content data during maize jointing, trumpet, and big trumpet stages, creating a multisource feature dataset. Subsequently, chlorophyll content estimation models were built based on four machine learning algorithms, namely, ridge regression (RR), light gradient boosting machine (LightGBM), random forest regression (RFR), and stacking ensemble learning. The research results demonstrate that (1) the multisource feature fusion approach achieves higher estimation accuracy compared to the single-feature method, with R2 ranging from 0.699 to 0.754 and rRMSE ranging from 8.36% to 9.47%; and (2) the stacking ensemble learning outperforms traditional machine learning algorithms in chlorophyll content estimation accuracy, particularly when combined with multisource feature fusion, resulting in the best estimation results. In summary, this study proves the effective improvement in chlorophyll content estimation accuracy through multisource feature fusion and stacking ensemble learning. The combination of these methods provides reliable estimation of chlorophyll content using UAV remote sensing technology and brings new insights to precision agriculture management in this field.\",\"PeriodicalId\":20944,\"journal\":{\"name\":\"Remote. Sens.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote. Sens.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/rs15133454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring Multisource Feature Fusion and Stacking Ensemble Learning for Accurate Estimation of Maize Chlorophyll Content Using Unmanned Aerial Vehicle Remote Sensing
Crop chlorophyll content measuring plays a vital role in monitoring crop growth and optimizing agricultural inputs such as water and fertilizer. However, traditional methods for measuring chlorophyll content primarily rely on labor-intensive chemical analysis. These methods not only involve destructive sampling but also are time-consuming, often resulting in obtaining monitoring results after the optimal growth period of crops. Unmanned aerial vehicle (UAV) remote sensing technology offers the potential for rapidly acquiring chlorophyll content estimations over large areas. Currently, most studies only utilize single features from UAV data and employ traditional machine learning algorithms to estimate chlorophyll content, while the potential of multisource feature fusion and stacking ensemble learning in chlorophyll content estimation research remains largely unexplored. Therefore, this study collected UAV spectral features, thermal features, structural features, as well as chlorophyll content data during maize jointing, trumpet, and big trumpet stages, creating a multisource feature dataset. Subsequently, chlorophyll content estimation models were built based on four machine learning algorithms, namely, ridge regression (RR), light gradient boosting machine (LightGBM), random forest regression (RFR), and stacking ensemble learning. The research results demonstrate that (1) the multisource feature fusion approach achieves higher estimation accuracy compared to the single-feature method, with R2 ranging from 0.699 to 0.754 and rRMSE ranging from 8.36% to 9.47%; and (2) the stacking ensemble learning outperforms traditional machine learning algorithms in chlorophyll content estimation accuracy, particularly when combined with multisource feature fusion, resulting in the best estimation results. In summary, this study proves the effective improvement in chlorophyll content estimation accuracy through multisource feature fusion and stacking ensemble learning. The combination of these methods provides reliable estimation of chlorophyll content using UAV remote sensing technology and brings new insights to precision agriculture management in this field.