基于原始语音信号特征学习的儿童语音识别研究

Selen Hande Kabil, Mathew Magimai Doss
{"title":"基于原始语音信号特征学习的儿童语音识别研究","authors":"Selen Hande Kabil, Mathew Magimai Doss","doi":"10.1109/ICASSP.2019.8682826","DOIUrl":null,"url":null,"abstract":"Children speech recognition based on short-term spectral features is a challenging task. One of the reasons is that children speech has high fundamental frequency that is comparable to formant frequency values. Furthermore, as children grow, their vocal apparatus also undergoes changes. This presents difficulties in extracting standard short-term spectral-based features reliably for speech recognition. In recent years, novel acoustic modeling methods have emerged that learn both the feature and phone classifier in an end-to-end manner from the raw speech signal. Through an investigation on PF-STAR corpus we show that children speech recognition can be improved using end-to-end acoustic modeling methods.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"135 3 1","pages":"5736-5740"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Improving Children Speech Recognition through Feature Learning from Raw Speech Signal\",\"authors\":\"Selen Hande Kabil, Mathew Magimai Doss\",\"doi\":\"10.1109/ICASSP.2019.8682826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Children speech recognition based on short-term spectral features is a challenging task. One of the reasons is that children speech has high fundamental frequency that is comparable to formant frequency values. Furthermore, as children grow, their vocal apparatus also undergoes changes. This presents difficulties in extracting standard short-term spectral-based features reliably for speech recognition. In recent years, novel acoustic modeling methods have emerged that learn both the feature and phone classifier in an end-to-end manner from the raw speech signal. Through an investigation on PF-STAR corpus we show that children speech recognition can be improved using end-to-end acoustic modeling methods.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"135 3 1\",\"pages\":\"5736-5740\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于短时谱特征的儿童语音识别是一项具有挑战性的任务。其中一个原因是儿童言语的基频很高,与形成峰频率值相当。此外,随着孩子的成长,他们的发声器官也会发生变化。这给语音识别可靠地提取标准短期频谱特征带来了困难。近年来,出现了一种新的声学建模方法,可以从原始语音信号中端到端学习特征和电话分类器。通过对PF-STAR语料库的研究,我们发现使用端到端声学建模方法可以改善儿童语音识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Children Speech Recognition through Feature Learning from Raw Speech Signal
Children speech recognition based on short-term spectral features is a challenging task. One of the reasons is that children speech has high fundamental frequency that is comparable to formant frequency values. Furthermore, as children grow, their vocal apparatus also undergoes changes. This presents difficulties in extracting standard short-term spectral-based features reliably for speech recognition. In recent years, novel acoustic modeling methods have emerged that learn both the feature and phone classifier in an end-to-end manner from the raw speech signal. Through an investigation on PF-STAR corpus we show that children speech recognition can be improved using end-to-end acoustic modeling methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1