利用证据推理改进了基于本体的文档搜索引擎中的文档排名

Wenhu Tang, Long Yan, Zhen Yang, Q. Wu
{"title":"利用证据推理改进了基于本体的文档搜索引擎中的文档排名","authors":"Wenhu Tang, Long Yan, Zhen Yang, Q. Wu","doi":"10.1049/iet-sen.2013.0015","DOIUrl":null,"url":null,"abstract":"This study presents a novel approach to document ranking in an ontology-based document search engine (ODSE) using evidential reasoning (ER). Firstly, a domain ontology model, used for query expansion, and a connection interface to an ODSE are developed. A multiple attribute decision making (MADM) tree model is proposed to organise expanded query terms. Then, an ER algorithm, based on the Dempster-Shafer theory, is used for evidence combination in the MADM tree model. The proposed approach is discussed in a generic frame for document ranking, which is evaluated using document queries in the domain of electrical substation fault diagnosis. The results show that the proposed approach provides a suitable solution to document ranking and the precision at the same recall levels for ODSE searches have been improved significantly with ER embedded, in comparison with a traditional keyword-matching search engine, an ODSE without ER and a non-randomness-based weighting model.","PeriodicalId":13395,"journal":{"name":"IET Softw.","volume":"45 1","pages":"33-41"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Improved document ranking in ontology-based document search engine using evidential reasoning\",\"authors\":\"Wenhu Tang, Long Yan, Zhen Yang, Q. Wu\",\"doi\":\"10.1049/iet-sen.2013.0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel approach to document ranking in an ontology-based document search engine (ODSE) using evidential reasoning (ER). Firstly, a domain ontology model, used for query expansion, and a connection interface to an ODSE are developed. A multiple attribute decision making (MADM) tree model is proposed to organise expanded query terms. Then, an ER algorithm, based on the Dempster-Shafer theory, is used for evidence combination in the MADM tree model. The proposed approach is discussed in a generic frame for document ranking, which is evaluated using document queries in the domain of electrical substation fault diagnosis. The results show that the proposed approach provides a suitable solution to document ranking and the precision at the same recall levels for ODSE searches have been improved significantly with ER embedded, in comparison with a traditional keyword-matching search engine, an ODSE without ER and a non-randomness-based weighting model.\",\"PeriodicalId\":13395,\"journal\":{\"name\":\"IET Softw.\",\"volume\":\"45 1\",\"pages\":\"33-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Softw.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-sen.2013.0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Softw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-sen.2013.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本研究提出了一种在基于本体的文档搜索引擎(ODSE)中使用证据推理(ER)进行文档排序的新方法。首先,开发了用于查询扩展的领域本体模型和与ODSE的连接接口;提出了一种多属性决策树模型来组织扩展查询项。然后,采用基于Dempster-Shafer理论的ER算法对MADM树模型进行证据组合。本文提出了一种通用的文档排序框架,并利用变电站故障诊断领域的文档查询对该框架进行了评价。结果表明,与传统的关键词匹配搜索引擎、不含ER的ODSE和非随机加权模型相比,嵌入ER后的ODSE在相同查全率水平下的搜索精度得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved document ranking in ontology-based document search engine using evidential reasoning
This study presents a novel approach to document ranking in an ontology-based document search engine (ODSE) using evidential reasoning (ER). Firstly, a domain ontology model, used for query expansion, and a connection interface to an ODSE are developed. A multiple attribute decision making (MADM) tree model is proposed to organise expanded query terms. Then, an ER algorithm, based on the Dempster-Shafer theory, is used for evidence combination in the MADM tree model. The proposed approach is discussed in a generic frame for document ranking, which is evaluated using document queries in the domain of electrical substation fault diagnosis. The results show that the proposed approach provides a suitable solution to document ranking and the precision at the same recall levels for ODSE searches have been improved significantly with ER embedded, in comparison with a traditional keyword-matching search engine, an ODSE without ER and a non-randomness-based weighting model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prioritising test scripts for the testing of memory bloat in web applications A synergic quantum particle swarm optimisation for constrained combinatorial test generation A hybrid model for prediction of software effort based on team size A 20-year mapping of Bayesian belief networks in software project management Emerging and multidisciplinary approaches to software engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1